首页 | 本学科首页   官方微博 | 高级检索  
     


OPTICAL MEASUREMENT OF MICROSCALE TRANSPORT PROCESSES IN DROPWISE CONDENSATION
Authors:Y-X Wang  J L Plawsky  P C Wayner Jr
Affiliation:1. Department of Mechanical and System Design Engineering , Hongik University , Seoul, Korea;2. School of Mechanical and Aerospace Engineering , Seoul National University , Seoul, Korea
Abstract:The optimum use of interfacial free-energy gradients to control fluid flow in small regions naturally leads to simpler passive heat transfer systems. In this context, "passive" refers to the natural pressure field for fluid flow due to changes in the intermolecular force field resulting from an imposed nonisothermal temperature field. Although the particular constrained vapor bubble (CVB) discussed can be viewed as a large version of a wickless heat pipe, it is a much more general heat transfer concept. Herein, it is an ideal system for the optical study of microscale transport processes in droplet condensation due to interfacial phenomena. This article concerns the movement of a single condensed ethanol sessile drop into a concave liquid film. The intermolecular force is found to be much larger than the gravitational force and dominates condensate removal. A dimensionless force balance for viscous shear stress demonstrates the effect of changes in the contact angle and curvature. A dimensionless difference in free energy is identified as the cause of spontaneous condensate removal.
Keywords:elastic properties  silicon nanocantilever  Tersoff potential
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号