首页 | 本学科首页   官方微博 | 高级检索  
     


Velocity-based Formation Damage Characterization Method for Produced Water Re-injection: Application on Masila Block Core Flood Tests
Authors:R Salehi Mojarad  A Settari
Affiliation:SPE, University of Calgary , Alberta , Canada
Abstract:Abstract

With increasing environmental regulations, more and more produced water is being re-injected; however, water injection programs may have low efficiency due to formation damage around the injected wellbore. Traditionally, formation damage was treated as a deep bed filtration (DBF) type of process characterized by laboratory-based damage parameters. These parameters inquire expensive concentration measurement, and lab-scaled results are not usually applicable for field cases. Recent studies on formation damage are more attracted to history-based approaches using an empirical damage equation to capture the uniqueness of each case study. In our previous work, such empirical (velocity based) model was studied and shown to be more practical than (and equivalent to) the DBF model. A robust characterization method was developed to calculate the damage parameters explicitly, and it was successfully tested against offshore field data. In this work, the method has been applied for analysis of a series of core flood tests on cores from the Masila Block field in Yemen and compared with measured damage parameters. Good agreement with lab-measured values validates the characterization method. The accuracy of the method is comparable to the DBF approach, while it is simpler and more suitable for implementing in reservoir simulators.
Keywords:damage characterization  formation damage  injectivity decline  Masila block  permeability reduction
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号