Ancestor controlled submodule inclusion in design databases |
| |
Authors: | Yu L. Rosenkrantz D.J. |
| |
Affiliation: | Dept. of Comput. Sci., State Univ. of New York, Albany, NY; |
| |
Abstract: | A paradigm is proposed for representing hierarchically specified design data in CAD database systems in which there are alternate expansions of hierarchically specified modules. The paradigm uses an ancestor-based scheme to control which instances of submodules are to be placed in the expansion of each instance of a given module and is formalized using a versioned directed acyclic multigraph (VDAG). The approach is aimed at reducing storage space in engineering design database systems and at providing a means for designers to specify alternate expansions of a module. The VDAG model is defined, and a mechanism by which a VDAG generates an exploded forest of design trees is described. Algorithms are provided to generate a design forest from a given VDAG, determine whether one module is contained by a larger module, extract a version from a VDAG, test whether two VDAGs are equivalent, and try to reduce the size of a VDAG. The problems of module containment and VDAG inequivalence are shown to be NP-complete, and the problem of finding a minimum sized VDAG equivalent to a given VDAG is shown to be NP-hard |
| |
Keywords: | |
|
|