首页 | 本学科首页   官方微博 | 高级检索  
     

基于膨胀运算的移动对象兴趣点检测方法
引用本文:王清,丁赤飚,付琨,任文娟. 基于膨胀运算的移动对象兴趣点检测方法[J]. 兵工学报, 2017, 38(10): 2041-2047. DOI: 10.3969/j.issn.1000-1093.2017.10.021
作者姓名:王清  丁赤飚  付琨  任文娟
作者单位:(1.中国科学院 电子学研究所, 北京 100190; 2.中国科学院 空间信息处理与应用系统技术重点实验室, 北京 100190;3.中国科学院大学 电子电气与通信工程学院, 北京 100049)
摘    要:针对传统兴趣点检测算法在准确性和效率方面的不足,提出基于膨胀运算的移动对象兴趣点检测方法(DMDO)。通过矩阵二值化操作滤除停留点噪声,提高预测准确率,并用膨胀运算替代传统方法中的聚类算法提高算法效率。将DMDO在开放空间数据集AMSA和IMIS3Days上进行仿真实验,结果表明:DMDO相比基于密度的空间聚类算法,在数据集AMSA上准确率平均提高17.94%,算法效率提高6.63倍;在数据集IMIS3Days上准确率平均提高19.98%,算法效率提高9.13倍;相比以聚类点排序结果确定聚类结构算法,DMDO在数据集AMSA上准确率平均提高20.04%,算法效率提高14.61倍;在数据集IMIS3Days上准确率平均提高16.60%,算法效率提高42.19倍;DMDO相比传统方法均表现出较高的预测准确性、较低的时间开销,适用于解决大数据背景下的移动对象兴趣点检测问题。

关 键 词:信息处理技术  轨迹数据挖掘  兴趣点检测  膨胀运算  开放空间  
收稿时间:2017-04-13

Interest Point Detection Method Based on Dilation Operation
WANG Qing,DING Chi-biao,FU Kun,REN Wen-juan. Interest Point Detection Method Based on Dilation Operation[J]. Acta Armamentarii, 2017, 38(10): 2041-2047. DOI: 10.3969/j.issn.1000-1093.2017.10.021
Authors:WANG Qing  DING Chi-biao  FU Kun  REN Wen-juan
Affiliation:(1.Institute of Electronics, Chinese Academy of Sciences, Beijing 100190, China; 2.Key Laboratory of Technology in GEO-Spatial Information Processing and Application System, Chinese Academy of Sciences, Beijing 100190, China; 3.School of Electronic, Electrical and Communication Engineering, University of Chinese Academy of Sciences, Beijing 100049, China)
Abstract:An interest point detection method based on dilation operation (DMDO) is proposed to improve the efficiency and accuracy of interest point detection,in which binarization is used to filter the noise,and the dilation operation is used to replace the clustering approach to enhance the efficiency of algorithm.DMDO is applied to two datasets of open space-AMSA and IMIS3Days.Compared to DensityBased Spatial Clustering of Applications with Noise (DBSCAN),the accuracy of DMDO is increased by 17.94% on dataset AMSA,and by 19.98% on dataset IMIS3Days,while the efficiency is improved by 6.63 times on dataset AMSA,and by 9.13 times on dataset IMIS3Days.Compared to Ordering Point To Identify the Cluster Structure (OPTICS),the accuracy of DMDO is increased by 20.04% on dataset AMSA,and by 16.60% on dataset IMIS3Days,while the efficiency is improved by 14.61 times on dataset AMSA,and by 42.19 times on dataset IMIS3Days.Experimental results demonstrate that,compared with traditional methods,DMDO has higher accuracy with less time overhead.DMDO is applicable to detect the interest points in the era of big data.
Keywords:information processing technology  trajectory data mining  interest point detection  dilation operation  open space
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《兵工学报》浏览原始摘要信息
点击此处可从《兵工学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号