首页 | 本学科首页   官方微博 | 高级检索  
     

基于WPNN与数据融合的损伤检测方法
引用本文:姜绍飞,付春,陈仲堂,盛岩. 基于WPNN与数据融合的损伤检测方法[J]. 沈阳建筑工程学院学报(自然科学版), 2005, 21(2): 86-90
作者姓名:姜绍飞  付春  陈仲堂  盛岩
作者单位:[1]沈阳建筑大学土木工程学院,辽宁沈阳110168 [2]沈阳建筑大学理学院,辽宁沈阳110168 [3]大连市交通规划勘察设计院,辽宁大连116033
基金项目:国家自然科学基金资助项目(50408033),国家十五攻关项目(2002BA806B-4),辽宁省自然科学基金项目(20022136)
摘    要:目的 为了有效利用结构健康监测系统中的多源传感器数据信息,对复杂结构的健康状况进行诊断进而提高确诊率.方法 利用概率神经网络(PNN)的贝叶斯推理与诊断能力及多传感器数据融合原理,将神经网络与数据融合有机结合,使两者优势互补,提出了复杂结构损伤检测技术及其在多层框架结构中损伤检测及诊断中的应用.结果 提出了基于小波概率神经网络(WPNN)与数据融合的损伤检测方法.结论 基于WPNN与数据融合的损伤检测方法是可行的、有效的.

关 键 词:检测方法  结构健康监测系统  多传感器数据融合  概率神经网络  多层框架结构  贝叶斯推理  数据信息  健康状况  复杂结构  诊断能力  有机结合  优势互补  损伤检测  检测技术  结构损伤  确诊率
文章编号:1671-2021(2005)02-0086-05
修稿时间:2004-07-18

Structural Damage Detection Method Based on Wavelet PNN and Data Fusion
JIANG Shao-fei,FU Chun,CHEN Zhong-tang,SHENG Yan. Structural Damage Detection Method Based on Wavelet PNN and Data Fusion[J]. Journal of Shenyang Archit Civil Eng Univ: Nat Sci, 2005, 21(2): 86-90
Authors:JIANG Shao-fei  FU Chun  CHEN Zhong-tang  SHENG Yan
Affiliation:JIANG Shao-fei~1,FU Chun~1,CHEN Zhong-tang~2,SHENG Yan~3
Abstract:In order to make full use of multi-sensors data or information from multi-resources and to improve the diagnosis ratio for the health conditions of complex structures,a complex structural damage detection technique based on the neural networks and data fusion was presented by means of multi-sensors data fusion theory and probabilistic neural network.By using their advantages and overcoming disadvantages,this technique combined data fusion with neural network (NN),and it was applied to the damage detection and diagnosis of a multi-storey framed structure.Therefore,a structural damage detection method based on wavelet probabilistic neural network (WPNN) and data fusion was proposed.The result shows that the method of data fusion-based WPNN is feasible and effective.
Keywords:data fusion  structural damage detection  fusion algorithms  wavelet energy feature  probabilistic neural network
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号