首页 | 本学科首页   官方微博 | 高级检索  
     


Maximum likelihood analysis of algorithms and data structures
Authors:Ulrich Laube  Markus E. Nebel
Affiliation:Fachbereich Informatik, Technische Universität Kaiserslautern, Gottlieb-Daimler-Straße, 67663 Kaiserslautern, Germany
Abstract:We present a new approach for an average-case analysis of algorithms and data structures that supports a non-uniform distribution of the inputs and is based on the maximum likelihood training of stochastic grammars. The approach is exemplified by an analysis of the expected size of binary tries as well as by three sorting algorithms and it is compared to the known results that were obtained by traditional techniques. Investigating traditional settings like the random permutation model, we rediscover well-known results formerly derived by pure analytic methods; changing to biased data yields original results. All but one step of our analysis can be automated on top of a computer-algebra system. Thus our new approach can reduce the effort required for an average-case analysis, allowing for the consideration of realistic input distributions with unknown distribution functions at the same time. As a by-product, our approach yields an easy way to generate random combinatorial objects according to various probability distributions.
Keywords:Analysis of algorithms   Stochastic context free grammars   Generating functions   Maximum likelihood method   Tries   Sorting
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号