首页 | 本学科首页   官方微博 | 高级检索  
     


Densification and Mechanical Behavior of HfC and HfB2 Fabricated by Spark Plasma Sintering
Authors:Diletta Sciti  Stefano Guicciardi  Mats Nygren
Affiliation:CNR-ISTEC, Institute of Science and Technology for Ceramics, I-48018 Faenza, Italy;
Arrhenius Laboratory, Department of Inorganic Chemistry, Stockholm University, SE-10691 Stockholm, Sweden
Abstract:Hafnium diboride (HfB2)- and hafnium carbide (HfC)-based materials containing MoSi2 as sintering aid in the volumetric range 1%–9% were densified by spark plasma sintering at temperatures between 1750° and 1950°C. Fully dense samples were obtained with an initial MoSi2 content of 3 and 9 vol% at 1750°–1800°C. When the doping level was reduced, it was necessary to raise the sintering temperature in order to obtain samples with densities higher than 97%. Undoped powders had to be sintered at 2100°–2200°C. For doped materials, fine microstructures were obtained when the thermal treatment was lower than 1850°C. Silicon carbide formation was observed in both carbide- and boride-based materials. Nanoindentation hardness values were in the range of 25–28 GPa and were independent of the starting composition. The nanoindentation Young's modulus and the fracture toughness of the HfB2-based materials were higher than those of the HfC-based materials. The flexural strength of the HfB2-based material with 9 vol% of MoSi2 was higher at 1500°C than at room temperature.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号