首页 | 本学科首页   官方微博 | 高级检索  
     

基于神经网络的氢氧化铝焙烧优化控制系统
引用本文:刘代飞,李劼,陈湘涛,丁凤其,邹忠. 基于神经网络的氢氧化铝焙烧优化控制系统[J]. 中北大学学报(自然科学版), 2008, 29(2): 125-130
作者姓名:刘代飞  李劼  陈湘涛  丁凤其  邹忠
作者单位:中南大学,冶金科学与工程学院,湖南,长沙,410083;中南大学,信息科学与工程学院,湖南,长沙,410083
摘    要:采用OPC(OLE for Process Control)技术架构了三层模式的过程优化控制系统,实现了优化控制系统与现有PLC系统的数据通讯、信息共享.优化控制系统由FLUENT仿真分析、过程智能建模、流程理论分析和优化控制四大模块组成.主要模块采用神经网络架构,实现复杂炉况的系统辩识以及工艺参数的优化计算.生产应用表明:该系统具有很好的指导性,能稳定生产、优化操作,为节能和降废的整体优化提供了新手段和途径.

关 键 词:OPC  人工神经网络  模糊控制  遗传算法  FLUENT
文章编号:1673-3193(2008)02-0125-06
修稿时间:2007-08-16

Optimized Control System Based on Artificial Neural Networks for Gas Suspension Calcination of Aluminum Hydroxide
LIU Dai-fei,LI Jie,CHEN Xiang-tao,DING Feng-qi,ZOU Zhong. Optimized Control System Based on Artificial Neural Networks for Gas Suspension Calcination of Aluminum Hydroxide[J]. Journal of North University of China, 2008, 29(2): 125-130
Authors:LIU Dai-fei  LI Jie  CHEN Xiang-tao  DING Feng-qi  ZOU Zhong
Abstract:A three-layer optimized control system is constructed with OLE for process control(OPC) technology,by which the communication and information share between the optimization system and the existing PLC system are realized.In the optimization system,there are four parts of FLUENT simulating analysis,intelligent modeling,mass and energy balance analysis and optimized control.The system uses artificial neural networks(ANN) to identify the complex furnace conditions and to optimize process parameters.Applications indicate that the optimized system can stabilize production,optimize operation,save energy and reduce exhaust emission.
Keywords:OPC  artificial neural networks  fuzzy control  genetic algorithms  FLUENT
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号