首页 | 本学科首页   官方微博 | 高级检索  
     

UCT-RAVE算法在多人非完备信息博弈中的应用
引用本文:芮雄星,王一莉. UCT-RAVE算法在多人非完备信息博弈中的应用[J]. 计算机工程与设计, 2012, 33(3): 1136-1139
作者姓名:芮雄星  王一莉
作者单位:南京工业大学电子与信息工程学院,江苏南京,210009
摘    要:针对传统博弈搜索算法无法适用于多人非完备信息博弈,通过分析UCT-RAVE算法的原理和特性,提出了运用UCT-RAVE算法与蒙特卡罗抽样技术相结合的方法.通过蒙特卡罗抽样技术将非完备信息提取为有一定可信度的完备信息,运用UCT-RAVE算法基于此完备信息进行搜索,结合多次蒙特卡罗抽样下的最佳收益,选择最适行动.实例结果表明了该方法的可行性和有效性.

关 键 词:博弈搜索  UCT-RAVE算法  多人非完备信息博弈  蒙特卡罗抽样  牌类博弈

Application of UCT-RAVE algorithm in multi-player games with imperfect information
RUI Xiong-xing , WANG Yi-li. Application of UCT-RAVE algorithm in multi-player games with imperfect information[J]. Computer Engineering and Design, 2012, 33(3): 1136-1139
Authors:RUI Xiong-xing    WANG Yi-li
Affiliation:(College of Electronic and Information Engineering,Nanjing University of Technology,Nanjing 210009,China)
Abstract:Aimed at the problems that traditional gaming search algorithms do not suit to multi-palyer games with imperfect information,a method of combining UCT-RAVE and Monte-Carlo sampling is proposed,after analyszing the principle and characteristic of UCT-RAVE algorithm.First,the imperfect information is replaced by simulating perfect information with Monte-Carlo sampling,then UCT-RAVE is used based on perfect information for searching,at last most suitable action is selected after considering the best profits of many Monte-Carlo samples.Simulation demonstrated the feasibility and the effectiveness of the method.
Keywords:gaming search  UCT-RAVE algorithm  multi-player games  Monte-Carlo sampling  card gaming
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号