首页 | 本学科首页   官方微博 | 高级检索  
     


In-situ formation of Al2O3/Al core-shell from waste material: Production of porous composite improved by graphene
Authors:MF Zawrah  Mohammed A Taha  H Abo Mostafa
Affiliation:1. National Research Centre, Ceramics Department, 12622 Dokki, Cairo, Egypt;2. National Research Centre, Solid State Physics Department, 12622 Dokki, Cairo, Egypt;3. Physics Department, Faculty of Science, Menoufia University, Egypt
Abstract:Aluminum dross produced from aluminum industry was used to fabricate Al2O3/Al porous composites. The dross was milled for 20?h to obtain nano powder. The milled material was examined by TEM and XRD. Graphene (up to 4?wt%) was mixed with the dross and utilized to reinforce sintered composites. The milled powders were compacted then fired at various temperatures up to 700?°C. Physical properties in terms of bulk density and apparent porosity for sintered composites were tested using Archimedes method. SEM attached by energy dispersive spectrometer (EDS) was used to inspect microstructure and elemental analysis of sintered composites. Microhardness and compressive strength were also measured. Ultrasonic nondestructive technique was utilized to examine the elastic moduli. Electrical conductivity of sintered composite was also studied. During milling up to 20?h, Al2O3/Al core-shell was in-situ formed with size of 65.9 and 23.8?nm, respectively. The apparent porosity of sintered composites was improved with rising graphene percent while it decreased with increasing sintering temperature. Increasing of graphene mass percent and firing temperature led to remarkable increase in all mechanical properties and electrical conductivity. The maximum compressive strength, hardness, elastic modulus and electrical conductivity were 200?MPa, 1200?MPa, 215?GPa and 1.42?×?10?5 S/m, respectively, obtained for composite sintered at 700?°C having 4?wt% graphene.
Keywords:Aluminum dross  Graphene  Sintering  Properties
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号