首页 | 本学科首页   官方微博 | 高级检索  
     

基于信息熵的形式背景属性约简
引用本文:陈东晓,李进金,林荣德,陈应生. 基于信息熵的形式背景属性约简[J]. 模式识别与人工智能, 2020, 33(9): 786-798. DOI: 10.16451/j.cnki.issn1003-6059.202009003
作者姓名:陈东晓  李进金  林荣德  陈应生
作者单位:1.华侨大学 数学科学学院 计算科学福建省高校重点实验室泉州 362021
2.闽南师范大学 数学与统计学院 漳州 363000
基金项目:国家自然科学基金;国家自然科学基金;创新团队发展计划;泉州市高层次人才团队项目
摘    要:属性重要度和属性约简都是形式概念分析研究中的关注重点.通过信息粒的角度,文中提出基于信息熵研究形式背景的属性约简的一些方法.首先,给出形式背景的信息熵、条件熵及互信息等定义,通过条件熵对协调的决策形式背景进行属性约简,得到形式背景的粒协调和熵协调是等价的.然后,在熵不协调的决策形式背景中定义有限信息熵、有限条件熵和有限互信息,利用有限条件熵对不协调的决策形式背景进行属性约简.最后,基于属性重要度分别设计熵协调和熵不协调的决策形式背景的属性约简算法,通过数值实验验证文中算法的有效性.

关 键 词:形式背景  信息熵  条件熵  有限条件熵  属性约简
收稿时间:2020-06-22

Attribute Reductions of Formal Context Based on Information Entropy
CHEN Dongxiao,LI Jinjin,LIN Rongde,CHEN Yingsheng. Attribute Reductions of Formal Context Based on Information Entropy[J]. Pattern Recognition and Artificial Intelligence, 2020, 33(9): 786-798. DOI: 10.16451/j.cnki.issn1003-6059.202009003
Authors:CHEN Dongxiao  LI Jinjin  LIN Rongde  CHEN Yingsheng
Affiliation:1. Fujian Province University Key Laboratory of Computational Science, School of Mathematical Sciences, Huaqiao University, Quanzhou 362021
2. School of Mathematics and Statistics, Minnan Normal University, Zhangzhou 363000
Abstract:Attribute significances and attribute reduction are crucial in formal concept analysis. Some approaches to attribute reduction of formal context are proposed based on information entropy. Firstly, information entropy, conditional entropy and mutual information of formal context are defined, and attribute reduction by means of conditional entropy is conducted in consistent decision formal context. The equivalence between the granular consistency and the entropy consistency in decision formal context is produced. Secondly, limitary information entropy, limitary conditional entropy and limitary mutual information are proposed, and attribute reductions are conducted by means of limitary conditional entropy in inconsistent formal decision context. Finally, the attribute reduction algorithms of consistent and inconsistent formal decision contexts are proposed by the significance of attributes, and numerical experiments show the efficiency of the proposed algorithms.
Keywords:Formal Context  Information Entropy  Conditional Entropy  Limitary Conditional Entropy  Attribute Reduction  
本文献已被 万方数据 等数据库收录!
点击此处可从《模式识别与人工智能》浏览原始摘要信息
点击此处可从《模式识别与人工智能》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号