Abstract: | Heat transfer of an SI engine's piston is calculated by employing three different methods based on resistor-capacitor model with the help of MATLAB code, and then the piston is thermo-mechanically analyzed using commercial ANSYS code. The results of three methods are compared to study their effects on the piston thermal behavior. It is shown that resistor-capacitor model with less number of equations and consequently less solution time, is an appropriate method for solving problems of engine piston heat transfer. In the second part, the thermal stresses due to non-uniform temperature distribution, and mechanical stresses due to mechanical loads are calculated. Finally, the temperature distributions as a thermal load along with mechanical loads are applied to the piston to determine the total stress distribution and critical fracture zones. It is found that the amount of thermal stresses is considerable. |