首页 | 本学科首页   官方微博 | 高级检索  
     


Numerical analysis and design for tubular hydroforming
Authors:H. L. Xing  A. Makinouchi
Abstract:To get an optimum deformation path for tubular hydroforming, the hydroforming limit of isotropic and anisotropic tubes subjected to internal hydraulic pressure, independent axial load or torque is firstly proposed based on the Hill's general theory for the uniqueness to the boundary value problem and compared with those of the conventional sheet forming. The influences of the deformation path, the material properties and the active length–diameter ratio on the nucleation and the development of wrinkling during the free tubular hydroforming are also investigated. The above theory is used as a criterion and implemented with some new functions in our ITAS3D, an in-house finite element code for simulating the sheet forming, to control the materials flow and to prevent the final failure modes from occurring. Finally, the tubular hydroforming of an automobile differential gear box is taken as an example to show the efficiency and usefulness of the algorithm.
Keywords:Tubular hydroforming   Optimum deformation path   Forming limit   Plastic instability   Finite element method   Virtual design
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号