首页 | 本学科首页   官方微博 | 高级检索  
     


Controlled linear perturbation
Authors:Elisha Sacks  Victor Milenkovic  Min-Ho Kyung[Author vitae]
Affiliation:aComputer Science Department, Purdue University, West Lafayette, IN 47907-2066, USA;bDepartment of Computer Science, University of Miami, Coral Gables, FL 33124-4245, USA;cDepartment of Digital Media, Ajou University, Suwon, South Korea
Abstract:We present an algorithmic solution to the robustness problem in computational geometry, called controlled linear perturbation, and demonstrate it on Minkowski sums of polyhedra. The robustness problem is how to implement real RAM algorithms accurately and efficiently using computer arithmetic. Approximate computation in floating point arithmetic is efficient but can assign incorrect signs to geometric predicates, which can cause combinatorial errors in the algorithm output. We make approximate computation accurate by performing small input perturbations, which we compute using differential calculus. This strategy supports fast, accurate Minkowski sum computation. The only prior robust implementation uses a less efficient algorithm, requires exact algebraic computation, and is far slower based on our extensive testing.
Keywords:Robust computational geometry  Perturbation methods
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号