首页 | 本学科首页   官方微博 | 高级检索  
     


NCN concentration and interfering absorption by CH2O, NH and OH in low pressure methane/air flames with and without N2O
Authors:RJH Klein-Douwel  AA Konnov  NJ Dam  JJ ter Meulen
Affiliation:aInstitute for Molecules and Materials, Applied Molecular Physics, Radboud University Nijmegen, P.O. Box 9010, 6500 GL Nijmegen, The Netherlands;bEnergy and Sustainability Research Institute Groningen, Combustion Technology, University of Groningen, P.O. Box 221, 9700 AE Groningen, The Netherlands;cDivision of Combustion Physics, Lund University, P.O. Box 118, SE-221 00 Lund, Sweden;dMechanical Engineering, Combustion Technology, Eindhoven University of Technology, P.O. Box 513, 5600 MB Eindhoven, The Netherlands
Abstract:Absorption spectra in the wavelength region around 329 nm have been recorded with the cavity ring-down technique in various low pressure (200 hPa) CH4/air flames, two of which with N2O (nitrous oxide) addition. NCN (cyanonitrene) absorption appears to be significant only in N2O-enriched flames, which also reveal spectrally nearby absorption by NH. In a φ = 1.14, N2O oxidizer volume fraction = 57.0% flame, an upper limit for the NCN mole fraction of 4.0 × 10−6 has been found. Absorption spectra have been recorded as a function of height and these clearly show the presence of CH2O (formaldehyde) and OH as well. In CH4/air flames, absorption by CH2O at and near the flame front is strong enough to mask any possible absorption signal due to NCN. OH absorption spectrally coincident with the maximum NCN absorption has been observed as well. CH2O absorption is present throughout the whole 327–331 nm range, which can severely affect the accuracy of NCN concentration measurements if both species are present in the measurement volume. This necessitates the acquisition of continuous spectra instead of absorption measurements at a few specific wavelengths. Absorption signals at wavelengths characteristic for NCN, CH2O, NH and OH are analysed as function of height in the flame. Probabilities that these signals may be assigned unambiguously to a single species are discussed.
Keywords:NCN (cyanonitrene)  CH2O (formaldehyde)  NH  OH  Cavity ring-down spectroscopy  N2O (nitrous oxide)
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号