首页 | 本学科首页   官方微博 | 高级检索  
     


Cofilin Signaling in the CNS Physiology and Neurodegeneration
Authors:Jannatun Nayem Namme  Asim Kumar Bepari  Hirohide Takebayashi
Affiliation:1.Department of Pharmaceutical Sciences, North South University, Dhaka 1229, Bangladesh;2.Division of Neurobiology and Anatomy, Graduate School of Medical and Dental Sciences, Niigata University, Niigata 951-8510, Japan
Abstract:All eukaryotic cells are composed of the cytoskeleton, which plays crucial roles in coordinating diverse cellular functions such as cell division, morphology, migration, macromolecular stabilization, and protein trafficking. The cytoskeleton consists of microtubules, intermediate filaments, and actin filaments. Cofilin, an actin-depolymerizing protein, is indispensable for regulating actin dynamics in the central nervous system (CNS) development and function. Cofilin activities are spatiotemporally orchestrated by numerous extra- and intra-cellular factors. Phosphorylation at Ser-3 by kinases attenuate cofilin’s actin-binding activity. In contrast, dephosphorylation at Ser-3 enhances cofilin-induced actin depolymerization. Cofilin functions are also modulated by various binding partners or reactive oxygen species. Although the mechanism of cofilin-mediated actin dynamics has been known for decades, recent research works are unveiling the profound impacts of cofilin dysregulation in neurodegenerative pathophysiology. For instance, oxidative stress-induced increase in cofilin dephosphorylation is linked to the accumulation of tau tangles and amyloid-beta plaques in Alzheimer’s disease. In Parkinson’s disease, cofilin activation by silencing its upstream kinases increases α-synuclein-fibril entry into the cell. This review describes the molecular mechanism of cofilin-mediated actin dynamics and provides an overview of cofilin’s importance in CNS physiology and pathophysiology.
Keywords:cofilin  cofilin-1  cytoskeleton  neurodegeneration  actin  neuron  Alzheimer’  s disease  schizophrenia  LIMK1  SSH1
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号