首页 | 本学科首页   官方微博 | 高级检索  
     


Robust topology optimization accounting for misplacement of material
Authors:Miche Jansen  Geert Lombaert  Moritz Diehl  Boyan S Lazarov  Ole Sigmund  Mattias Schevenels
Affiliation:1. Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001, Leuven, Belgium
2. Department of Electrical Engineering, KU Leuven, Kasteelpark Arenberg 10, 3001, Leuven, Belgium
3. Department of Mechanical Engineering, Solid Mechanics, Technical University of Denmark, Nils Koppel’s Allé, Building 404, 2800, Lyngby, Denmark
4. Department of Architecture, Urbanism and Planning, KU Leuven, Kasteelpark Arenberg 1, 3001, Leuven, Belgium
Abstract:The use of topology optimization for structural design often leads to slender structures. Slender structures are sensitive to geometric imperfections such as the misplacement or misalignment of material. The present paper therefore proposes a robust approach to topology optimization taking into account this type of geometric imperfections. A density filter based approach is followed, and translations of material are obtained by adding a small perturbation to the center of the filter kernel. The spatial variation of the geometric imperfections is modeled by means of a vector valued random field. The random field is conditioned in order to incorporate supports in the design where no misplacement of material occurs. In the robust optimization problem, the objective function is defined as a weighted sum of the mean value and the standard deviation of the performance of the structure under uncertainty. A sampling method is used to estimate these statistics during the optimization process. The proposed method is successfully applied to three example problems: the minimum compliance design of a slender column-like structure and a cantilever beam and a compliant mechanism design. An extensive Monte Carlo simulation is used to show that the obtained topologies are more robust with respect to geometric imperfections.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号