首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation of acoustic forces on submicron aerosol particles in a standing wave field
Authors:Ramin J Imani
Affiliation:KTH Royal Institute of Technology, Department of Mechanics, Stockholm, Sweden
Abstract:The net acoustic force acting on submicron particles suspended in a gas and exposed to a standing wave field is investigated as a function of particle size, by measuring both the aerosol number density and size distribution in a flow-through resonator. By taking into account all contributions relevant to the net force, this experimental study provides a first estimate for the acoustic radiation force in a size range where molecular effects are expected to be significant. The experiment consists of an electrostatic transducer generating a standing wave in the 50–80 kHz frequency range, with the submicron aerosol particles concentrated at pressure antinodes located across the height of a rectangular channel. A section of the flow is sampled isokinetically and analyzed using a Scanning Mobility Particle Sizer (SMPS), while the nodal patterns are visualized simultaneously using light scattering. The net acoustic force is calculated from their measured displacement along the axis of the 1D standing wave field. The component of this force resulting from radiation pressure is estimated by subtracting contributions from other forces. The results provide the first experimental estimation of the size dependence of the acoustic contrast factor for submicron aerosol particles, demonstrating the possibility of performing acoustic separation for diameters as small as 150 nm.

Copyright © 2018 American Association for Aerosol Research

Keywords:Yannis Drossinos
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号