首页 | 本学科首页   官方微博 | 高级检索  
     


The Melting Characteristics and Interfacial Reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu Joints During Reflow Soldering
Authors:J Q Huang  M B Zhou  X P Zhang
Affiliation:1.School of Materials Science and Engineering,South China University of Technology,Guangzhou,China;2.Guangdong Provincial Engineering R&D Center of Electronic Packaging Materials and Reliability,South China University of Technology,Guangzhou,China
Abstract:In this work, the melting characteristics and interfacial reactions of Sn-ball/Sn-3.0Ag-0.5Cu-paste/Cu (Sn/SAC305-paste/Cu) structure joints were studied using differential scanning calorimetry, in order to gain a deeper and broader understanding of the interfacial behavior and metallurgical combination among the substrate (under-bump metallization), solder ball and solder paste in a board-level ball grid array (BGA) assembly process, which is often seen as a mixed assembly using solder balls and solder pastes. Results show that at the SAC305 melting temperature of 217°C, neither the SAC305-paste nor the Sn-ball coalesce, while an interfacial reaction occurs between the SAC305-paste and Cu. A slight increase in reflow temperature (from 217°C to 218°C) results in the coalescence of the SAC305-paste with the Sn-ball. The Sn-ball exhibits premelting behavior at reflow temperatures below its melting temperature, and the premelting direction is from the bottom to the top of the Sn-ball. Remarkably, at 227°C, which is nearly 5°C lower than the melting point of pure Sn, the Sn-ball melts completely, resulting from two eutectic reactions, i.e., the reaction between Sn and Cu and that between Sn and Ag. Furthermore, a large amount of bulk Cu6Sn5 phase forms in the solder due to the quick dissolution of Cu substrate when the reflow temperature is increased to 245°C. In addition, the growth of the interfacial Cu6Sn5 layer at the SAC305-paste/Cu interface is controlled mainly by grain boundary diffusion, while the growth of the interfacial Cu3Sn layer is controlled mainly by bulk diffusion.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号