首页 | 本学科首页   官方微博 | 高级检索  
     


A predictive model for the reactor inorganic suspended solids concentration in activated sludge systems
Authors:Ekama G A  Wentzel M C
Affiliation:Water Research Group, Department of Civil Engineering, University of Cape Town, Private Bag, Rondebosch, Cape 7707, South Africa. ekama@ebe.uct.ac.za
Abstract:A simple predictive model for the activated sludge reactor inorganic suspended solids (ISS) concentration (excluding that from chemical precipitant dosing) is presented. It is based on the accumulation of influent ISS in the reactor and an ordinary heterotrophic organism (OHO) ISS content (fiOHO) of 0.15 mg ISS/mg OHO organic (volatile) suspended solids (VSS) and a variable phosphate accumulating organism (PAO) ISS content (fiPAO) proportional to their P content (fXBGP). Organism ISS content is conceptualized as the uptake of dissolved inorganic solids by active organisms, which when dried in the total suspended solids (TSS) test procedure, precipitate and manifest as ISS. The model is validated with data from 22 investigations conducted over the past 15 years on 30 aerobic and anoxic-aerobic nitrification-denitrification (ND) systems and 18 anaerobic-anoxic-aerobic ND biological excess P removal (BEPR) systems variously fed artificial and real wastewater, and operated from 3 to 20 days sludge age. The predicted reactor VSS/TSS ratio reflects the observed relative sensitivity to sludge age, which is low, and to BEPR, which is high. To use the model for design, two parameters need to be known: (1) the influent ISS concentration, which is not commonly measured in wastewater characterization analyses and (2) the P content of PAOs (fXBGP), which can vary considerably depending on the extent of anoxic P uptake BEPR that takes place in the system. Some guidance on the measurement of influent ISS concentration and selection of the PAO P content to calculate the mixed liquor VSS/TSS ratio for design is given.
Keywords:Activated sludge  Inorganic suspended solids  Predictive model  Biological nutrient removal
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号