首页 | 本学科首页   官方微博 | 高级检索  
     

基于灰色遗传BP神经网络的校园区间需水预测研究
引用本文:杨利纳,李文竹,刘 心. 基于灰色遗传BP神经网络的校园区间需水预测研究[J]. 水资源与水工程学报, 2019, 30(3): 133-138
作者姓名:杨利纳  李文竹  刘 心
作者单位:(河北工程大学, 河北 邯郸 056038)
基金项目:国家自然科学基金项目(61440001);教育部新世纪优秀人才支持计划项目(NCET-13-0770);河北省高等学校高层次人才科学研究项目(GCC2014062)
摘    要:水资源预测是城市安全用水的基础保障,而校园用水预测是城市用水规划和管理的组成部分。针对校园用水受很多因素影响产生的不确定性,提出了基于灰色遗传BP神经的校园用水预测模型。模型对校园用水的数据进行灰色关联分析,并加入遗传算法去优化BP神经网络,经过残差计算,输出区间的预测值。运用该模型可以充分提取小样本信息,解决神经网络无法自动寻优的问题。通过Matlab对校园的用水区间数据进行仿真,得出的结果显示,预测的数据和实际数据基本吻合,其仿真精度可以达到90. 32%,验证了该方法的可行性,此预测方法有一定的借鉴意义。

关 键 词:灰色关联分析  遗传算法  BP神经网络  区间需水预测  残差

On campus interval water demand prediction based on grey genetic BP neural network
YANG Lin,LI Wenzhu,LIU Xin. On campus interval water demand prediction based on grey genetic BP neural network[J]. Journal of water resources and water engineering, 2019, 30(3): 133-138
Authors:YANG Lin  LI Wenzhu  LIU Xin
Abstract:Water resource prediction is the basic guarantee of urban safe water use, while campus water use prediction is the basis of urban water use planning and management. Aiming at solving the uncertainty of campus water consumption caused by several factors, a prediction model of campus water consumption based on grey genetic BP neural network is proposed. The model carries out grey relational analysis on the data of campus water consumption, and adds genetic algorithm to optimize BP neural network. After residual calculation, the predicted value of the output interval is obtained. This model can fully extract information from small samples and add genetic optimization neural network to solve the problem that neural network cannot automatically optimize. The results of Matlab simulation of campus water use interval data show that the predicted data and actual data are basically consistent with a simulation accuracy 90.32%, and it verified the feasibility of the method, the prediction method has some reference significance.
Keywords:
本文献已被 CNKI 等数据库收录!
点击此处可从《水资源与水工程学报》浏览原始摘要信息
点击此处可从《水资源与水工程学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号