首页 | 本学科首页   官方微博 | 高级检索  
     

基于光滑化$L_1$正则项的随机配置网络
引用本文:刘晶晶,刘业峰,马祎航,富月. 基于光滑化$L_1$正则项的随机配置网络[J]. 控制与决策, 2024, 39(3): 813-818
作者姓名:刘晶晶  刘业峰  马祎航  富月
作者单位:沈阳工学院 基础课部,辽宁 沈抚示范区 113122;沈阳工学院 辽宁省数控机床信息物理融合与 智能制造重点实验室,辽宁 沈抚示范区 113122;沈阳工学院 机械工程与自动化学院, 辽宁 沈抚示范区 113122;东北大学 流程工业综合自动化国家重点实验室,沈阳 110819
基金项目:国家自然科学基金项目(62073226);辽宁省自然科学基金重点领域联合开放基金项目(2022-KF-11-01,2020-KF-11-09,2021-KF-11-05);沈抚示范区本级科技计划项目(2020JH13,2021JH07);沈阳工学院青年骨干教师科研基金项目(QN202210).
摘    要:为了提高随机配置网络(stochastic configuration networks,SCN)的泛化能力,提出一种适用于SCN的光滑化$L_1$正则化方法.针对$L_1$正则化算子局部不可微的缺陷,在曲线不光滑点的邻域内进行光滑处理,并在此基础上构建SCN的光滑误差函数,提出增量计算权值的算法,进而以交替方向乘子法为基础给出权值的全局优化算法,并且在理论上分析算法的收敛性.与$L_1$正则化的稀疏性和$L_2$正则化均匀减小参数的特点相比,所提出方法按重要程度保留数据的全部特征,使参数既保持在较小的范围内又具有层次分明的分布,从而使网络具有更好的泛化能力.最后,通过数值仿真实验验证了所提出方法的可行性和有效性.

关 键 词:光滑正则化  随机配置网络  泛化能力  交替方向乘子法  收敛性分析  数据特征

Smoothing $L_1$ regularization for stochastic configuration networks
LIU Jing-jing,LIU Ye-feng,MA Yi-hang,FU Yue. Smoothing $L_1$ regularization for stochastic configuration networks[J]. Control and Decision, 2024, 39(3): 813-818
Authors:LIU Jing-jing  LIU Ye-feng  MA Yi-hang  FU Yue
Affiliation:Department of Basic Courses,Shenyang Institute of Technology,Shenfu New District 113122,China;Liaoning Key Laboratory of Information Physics Fusion and Intelligent Manufacturing for CNC Machine,Shenyang Institute of Technology,Shenfu New District 113122,China;School of Mechanical Engineering and Automation,Shenyang Institute of Technology,Shenfu New District 113122,China; State Key Laboratory of Synthetical Automation for Process Industries,Northeastern University,Shenyang 110819,China
Abstract:In order to improve the generalization capability of stochastic configuration networks (SCNs), a smooth $L_1$ regularization method for SCNs is proposed. Aiming at the defect of local non-differentiability of the $L_1$ regularization operator, smoothing is carried out in the neighborhood of non-smooth points of the curve. The convex error function of the SCN is constructed on this basis, and an algorithm for incremental calculation of the weights of the SCN is proposed. Furthermore, the global optimization algorithm is proposed based on the alternating direction multiplier method, and the convergence of the algorithm is analyzed theoretically. Compared with the sparsity of $L_1$ regularization and the uniform reduction of parameters by $L_2$ regularization, the proposed method retains all features of the data according to the degree of importance, the parameters are not only kept in a small range, but also have hierarchical distribution, so that the network has better generalization ability. Finally, the feasibility and effectiveness of the proposed method are verified by some numerical simulations.
Keywords:smoothing regularization;stochastic configuration networks;generalization capability;alternating direction multiplier method;convergence analysis;data feature
点击此处可从《控制与决策》浏览原始摘要信息
点击此处可从《控制与决策》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号