首页 | 本学科首页   官方微博 | 高级检索  
     

多尺度特征自适应融合的气动控制阀故障诊断
引用本文:郝洪涛,王凯,张炳建,刘建昊. 多尺度特征自适应融合的气动控制阀故障诊断[J]. 仪器仪表学报, 2023, 44(10): 167-178
作者姓名:郝洪涛  王凯  张炳建  刘建昊
作者单位:1. 宁夏大学机械工程学院,2. 宁夏智能装备 CAE 重点实验室
基金项目:宁夏回族自治区重点研发计划项目(2022BEE02002)资助
摘    要:气动控制阀作为过程工业典型的终端执行机构,由于故障发生率高、故障类型繁多,导致故障识别难度大,且故障后果严重,因此对其进行智能的故障检测和诊断具有重要的实际意义。 本文提出了一种多尺度特征自适应融合网络用于气动控制阀故障诊断。 首先,搭建了融合自注意力机制的多尺度特征提取网络自动提取信号的空间特征和细节特征。 然后,设计了权重自适应特征融合网络对多尺度特征加权融合,提高模型对故障特征的表征能力。 最后,由长短时记忆神经网络和 SoftMax 函数实现特征识别和故障分类。 实验结果表明,该模型在 DAMADICS 阀门基准实验平台上的平均检测准确率达到 96. 82% ,均高于其他对比模型。 与最近发表文献中的检测结果对比发现,本文开发的模型在可检测的故障数量和检测准确率方面也具有一定的优势,并且通过实验验证了模型的检测性能。

关 键 词:气动控制阀  故障诊断  特征提取  特征融合  卷积神经网络

Fault diagnosis of pneumatic control valves with multi-scale features adaptive fusion
Hao Hongtao,Wang Kai,Zhang Bingjian,Liu Jianhao. Fault diagnosis of pneumatic control valves with multi-scale features adaptive fusion[J]. Chinese Journal of Scientific Instrument, 2023, 44(10): 167-178
Authors:Hao Hongtao  Wang Kai  Zhang Bingjian  Liu Jianhao
Affiliation:1. School of Mechanical Engineering, Ningxia University
Abstract:Pneumatic control valves act as typical terminal actuators in the process industry, which suffer from difficulties in faultidentification and severe consequences of faults due to the high incidence of faults and diverse fault types. Therefore, intelligent faultdetection and diagnosis of pneumatic control valves have crucial practical significance. In this paper, an adaptive multi-scale featuresfusion network is proposed for the pneumatic control valve fault diagnosis. Firstly, a multi-scale feature extraction network with fusionself-attention mechanism is constructed to automatically extract spatial and detail features of signals. Then a weighted adaptive featurefusion network is designed to perform the weighted fusion of multi-scale features to improve the fault feature characterization capability ofmodel. Finally, the feature identification and fault classification are performed by the Long short-term memory neural network withSoftMax function. The experimental results show that the model achieves an average accuracy of 96. 82% on the DAMADICS valvebenchmark experimental platform, which are higher than other comparative models. Comparison with the detection results in the latestliterature reveals that the model developed in this paper also has certain advantages such as the number of detectable faults and detectionaccuracy, and the detection performance of model is experimentally verified.
Keywords:pneumatic control valve   fault diagnosis   feature extraction   feature fusion   convolutional neural network
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号