摘 要: | 测量精度一直是影响车辆动态称重系统有效可靠性的主要因素。针对车辆动态称重系统测量精度较低这个问题,提出了一种基于鲸鱼优化(Whale Optimization Algorithm, WOA)算法和模拟退火(Simulated Annealing, SA)算法混合优化的BP神经网络(Back Propagation Neural Network)动态称重模型。首先,简单介绍了动态称重系统的结构和原理。然后,通过小波变换对动态称重系统的采样信号进行过滤重构处理,经过计算得到的动态车重、车速和轴数作为BP神经网络模型的输入参数。其次,建立了一个由WOSA算法优化的BP神经网络来预测实际车辆总重和轴重。最后,比较了WOSA算法优化的BP神经网络模型的预测能力并得出结论。仿真结果表明,WOSA-BP车辆动态称重模型收敛速度快,精度高,最大总重的相对误差为0.58%,最大轴重相对误差为6.73%。
|