首页 | 本学科首页   官方微博 | 高级检索  
     

面向无人机数据采集的 LoRa 扩频因子预测模型研究
引用本文:张铮,汪杰,倪西学. 面向无人机数据采集的 LoRa 扩频因子预测模型研究[J]. 仪器仪表学报, 2023, 44(10): 294-302
作者姓名:张铮  汪杰  倪西学
作者单位:1. 上海海洋大学工程学院;2. 上海博取仪器有限公司
基金项目:上海市教委水产动物良种创制与绿色养殖协同创新中心项目(2021 科技 02-12)、上海市崇明区农业科创项目(2021CNKC-05-06)资助
摘    要:针对在缺少移动网络覆盖的偏远地区实现大面积数据采集与环境监测,首先设计了无人机移动网关与地面节点的LoRa 通信协议;在此基础上提出了一种基于改进极限学习机(PG-ELM)的扩频因子预测模型,以实现扩频因子的动态调整。 为提高预测准确度与效率,该模型以信号强度、信噪比、距离、丢包率、温度和相对湿度作为输入,以粒子群算法(PSO)和灰狼算法(GWO)联合算法对 ELM 模型进行改进。 通过无人机移动通信试验获取 LoRa 通信数据样本集,进行模型训练获得优化的PG-ELM 模型。 试验结果表明,在 20 kB 数据大小的情况下,本方案的数据采集时间比单一 SF12、SF7 减少约 78% 和 26% ,平均通信能耗比单一 SF12 降低 70% 以上,数据包投递率(PDR)高达 98% ,在能效性和预测实时性等方面优势明显。

关 键 词:LoRa  数据采集  扩频因子  预测模型

Research on the LoRa spreading factor prediction model for UAV data collection
Zhang Zheng,Wang Jie,Ni Xixue. Research on the LoRa spreading factor prediction model for UAV data collection[J]. Chinese Journal of Scientific Instrument, 2023, 44(10): 294-302
Authors:Zhang Zheng  Wang Jie  Ni Xixue
Affiliation:1. College of Engineering Science and Technology, Shanghai Ocean University; 2. Shanghai Boqu Instrument Co. , Ltd.
Abstract:For large area data collection and environmental monitoring in remote areas with no mobile network coverage, this article firstdesigns a LoRa communication protocol between the UAV mobile gateway and the ground nodes. Based on this, a spreading factorprediction model based on the improved extreme learning machine ( PG-ELM) is proposed to achieve dynamic optimization andadjustment of the spreading factor. To improve the prediction accuracy and efficiency, the model uses signal strength, signal-to-noiseratio, distance, packet loss rate, temperature and relative humidity as inputs. The particle swarm optimization algorithm and the greywolf optimization algorithm are fused to optimize the ELM model. The LoRa communication data sample sets are obtained through theUAV mobile communication experiment, which are then used to train and optimize the PG-ELM model. The results show that, with adata size of 20 kB, the proposed scheme reduces the data collection time by about 78% and 26% compared with single SF12 and SF7.It also lowers the average communication energy consumption by more than 70% compared with single SF12, achieves a packet deliveryrate of 98% , and has significant advantages in energy efficiency and prediction real-time performance.
Keywords:LoRa   data collection   spreading factor   predictive model
点击此处可从《仪器仪表学报》浏览原始摘要信息
点击此处可从《仪器仪表学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号