首页 | 本学科首页   官方微博 | 高级检索  
     

γ/α 2 相界面对TiAl合金超音速微粒轰击影响的分子动力学模拟
引用本文:曹卉,王靖淇,周宝成,俞兆亮,杨文乐,李海燕,刘俭辉,冯瑞成. γ/α 2 相界面对TiAl合金超音速微粒轰击影响的分子动力学模拟[J]. 稀有金属材料与工程, 2024, 53(2): 396-408
作者姓名:曹卉  王靖淇  周宝成  俞兆亮  杨文乐  李海燕  刘俭辉  冯瑞成
作者单位:兰州理工大学 机电工程学院,甘肃 兰州 730050;兰州理工大学 数字制造技术与应用教育部重点实验室,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050;兰州理工大学 数字制造技术与应用教育部重点实验室,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050;兰州理工大学 数字制造技术与应用教育部重点实验室,甘肃 兰州 730050,兰州理工大学 机电工程学院,甘肃 兰州 730050;兰州理工大学 数字制造技术与应用教育部重点实验室,甘肃 兰州 730050
基金项目:本工作得到了国家自然科学基金项目(No.52065036)、甘肃省自然科学基金重点项目(No.23JRRA760)、甘肃省自然科学基金(No.22JR5RA298)和兰州理工大学红柳一流学科建设项目支持。
摘    要:为探究γ/α2相界面对TiAl合金在轰击过程中的变形机制和轰击后力学性能的影响,通过分子动力学来模拟超音速微粒轰击双相TiAl合金的过程。结果表明:γ/α2不同厚度比模型的冲击变形机制不同,变形主要集中在γ相和界面处。随着γ相厚度的减小,与相界面接触的位错首先被界面处的失配位错网络吸收,然后在相界面处成核,最终穿过相界面进入α2相。冲击过程中产生的位错以Shockley位错为主,试样中形成了不完全层错四面体。冲击之后分别使用单轴拉伸模拟和纳米压痕模拟,测定了试样的强度和表面硬度。拉伸过程中相变、孪晶和层错是不同厚度比试样的主要变形机制。与其他试样相比,厚度比为1:3的双相TiAl合金在冲击后具有最高的屈服强度、硬度和弹性模量。

关 键 词:分子动力学  相界面  TiAl/Ti3Al  力学性能  塑性变形
收稿时间:2023-05-16
修稿时间:2023-06-26

Effect of γ/α 2 Phase Interface on Supersonic Fine Particle Bombardment of TiAl Alloy by Molecular Dynamics Simulation
Cao Hui,Wang Jingqi,Zhou Baocheng,Yu Zhaoliang,Yang Wenle,Li Haiyan,Liu Jianhui and Feng Ruicheng. Effect of γ/α 2 Phase Interface on Supersonic Fine Particle Bombardment of TiAl Alloy by Molecular Dynamics Simulation[J]. Rare Metal Materials and Engineering, 2024, 53(2): 396-408
Authors:Cao Hui  Wang Jingqi  Zhou Baocheng  Yu Zhaoliang  Yang Wenle  Li Haiyan  Liu Jianhui  Feng Ruicheng
Affiliation:School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China,School of Mechanical and Electrical Engineering, Lanzhou University of Technology, Lanzhou 730050, China;Key Laboratory of Digital Manufacturing Technology and Application, Ministry of Education, Lanzhou University of Technology, Lanzhou 730050, China
Abstract:In order to investigate the effect of γ/α2 phase interface on the deformation mechanism and mechanical properties of TiAl alloy during bombardment process, the supersonic fine particle bombardment of dual-phase TiAl alloy was simulated by molecular dynamics. Results show that the impact deformation mechanisms of γ/α2 models with different thickness ratios are different, and the deformation is mainly concentrated at the γ phase and interface. With decreasing the γ phase thickness, the dislocations in contact with the phase interface are firstly absorbed by the mismatched dislocation network, then they are nucleated at the phase interface, and eventually the dislocations pass through the phase interface, entering the α2 phase. Shockley dislocation is the main dislocation type in the impact process, and incomplete stacking fault tetrahedron forms in the specimen. After impact, uniaxial tensile simulation and nano-indentation simulation were conducted to measure the strength and surface hardness of the specimens. The main deformation mechanisms of specimens with different thickness ratios are the phase transformation, twins, and stacking faults during tensile process. Compared with other specimens, TiAl alloy with thickness ratio of 1:3 has the highest yield strength, the highest hardness, and the highest elastic modulus after impact.
Keywords:molecular dynamics  phase interface  TiAl/Ti3Al  mechanical properties  plastic deformation
点击此处可从《稀有金属材料与工程》浏览原始摘要信息
点击此处可从《稀有金属材料与工程》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号