首页 | 本学科首页   官方微博 | 高级检索  
     

基于视觉与标注相关信息的图像聚类算法
引用本文:于林森,张田文. 基于视觉与标注相关信息的图像聚类算法[J]. 电子学报, 2006, 34(7): 1265-1269
作者姓名:于林森  张田文
作者单位:哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001;哈尔滨工业大学计算机科学与技术学院,黑龙江,哈尔滨,150001
摘    要:算法首先按视觉相关程度对标注字进行打分,标注字的分值体现了语义一致图像的视觉连贯程度.利用图像语义类别固有的语言描述性,从图像标注中抽取具有明显视觉连贯性的标注字作为图像的语义类别,减少了数据库设计者繁琐的手工编目工作.按标注字信息对图像进行语义分类,提高了图像聚类的语义一致性.对4500幅Corel标注图像的聚类结果证实了算法的有效性.

关 键 词:图像聚类  图像检索  图像标注  图像分类  图像浏览
文章编号:0372-2112(2006)07-1265-05
收稿时间:2005-05-20
修稿时间:2005-05-202006-04-26

Image Clustering Based on Correlation Between Visual Features and Annotations
YU Lin-sen,ZHANG Tian-wen. Image Clustering Based on Correlation Between Visual Features and Annotations[J]. Acta Electronica Sinica, 2006, 34(7): 1265-1269
Authors:YU Lin-sen  ZHANG Tian-wen
Affiliation:School of Computer Science and Technology,Harbin Institute of Technology,Harbin,Heilongjiang 150001,China
Abstract:The paper proposes an unsupervised semantic categorization algorithm for annotated images. In order to establish image categories automatically by unsupervised learning ,the algorithm first scores the annotation words for each image by using their relevance to visual features. The scores of annotation words indicate to what extent these words have visual characteristics. The words with a good visually discriminative power can be chosen as image categories. Then a recursive clustering algorithm is presented to group images into the extracted semantic categories according to their annotation. Experiments using a 4500-image Corel database show the efficacy of the proposed algorithm. The results can be exploited for better image browsing and image retrieval.
Keywords:image clustering  image retrieval  image annotation  image categorization  image browsing
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《电子学报》浏览原始摘要信息
点击此处可从《电子学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号