首页 | 本学科首页   官方微博 | 高级检索  
     

基于长短期记忆神经网络的深水钻井工况实时智能判别模型
作者姓名:殷启帅  杨进  曹博涵  龙洋  陈柯锦  范梓伊  贺馨悦
作者单位:1.中国石油大学(北京)
基金项目:国家自然科学基金青年科学基金项目(编号:52101340);
摘    要:
深水钻井具有高投入、高风险等特点,其工况实时判别是提高钻井时效、减少复杂事故的基础和前提。传统深水钻井作业中,钻井工况主要通过基于编程方式的物理模型与经验模型进行判别,难以保证时效性和正确率。为此,创新性地将机器学习引入深水钻井工况判别全流程,考虑综合录井数据的长时间序列特征,基于长短期记忆神经网络建立了深水钻井工况实时智能判别机器学习模型。通过对29 856 140行深水综合录井数据预处理,选取钻头深度、井深、大钩高度、钻压、悬重、扭矩、转速、立管压力,共计8个综合录井参数作为输入特征,建立了20隐藏层×70节点的长短期记忆神经网络模型,实现了旋转钻进、滑动钻进、接单根、静止、循环、向下洗井、划眼、向上洗井、倒划眼、起钻、下钻及“其他”,共计12种常见深水钻井工况的实时智能判别,测试集上正确率高达94.09%,满足深水现场作业需求。该模型可实时智能地判别钻井工况,充分验证了长短期记忆神经网络用于钻井工况实时智能判别的可行性与时效性,为钻井时效分析和复杂事故预警提供了机器学习模型基础,并将进一步拓展机器学习在石油工程领域的应用范围。

关 键 词:deepwater drilling   rig activities classification   comprehensive mud-logging data   machine learning model   Long Short-Term Memory network
点击此处可从《石油钻采工艺》浏览原始摘要信息
点击此处可从《石油钻采工艺》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号