首页 | 本学科首页   官方微博 | 高级检索  
     

基于SVM决策树的网络流量分类
引用本文:邱婧,夏靖波,柏骏. 基于SVM决策树的网络流量分类[J]. 电光与控制, 2012, 19(6): 13-16
作者姓名:邱婧  夏靖波  柏骏
作者单位:空军工程大学电讯工程学院,西安,710077
基金项目:陕西省自然科学基金资助项目
摘    要:提出一种用支持向量机(SVM)决策树来对网络流量进行分类的方法,利用SVM决策树在多类分类方面的优势,解决SVM在流量分类中存在的无法识别区域和训练时间较长的问题。对权威流量数据集进行了测试,实验结果表明,SVM决策树在流量分类中比普通的"一对一"和"一对多"SVM方法具有更短的训练时间和更好的分类性能,分类准确率可以达到98.8%。

关 键 词:SVM决策树  流量分类  多类分类
收稿时间:2011-06-19

Network Traffic Classification Using SVM Decision Tree
QIU Jing , XIA Jingbo , BAI Jun. Network Traffic Classification Using SVM Decision Tree[J]. Electronics Optics & Control, 2012, 19(6): 13-16
Authors:QIU Jing    XIA Jingbo    BAI Jun
Affiliation:(Telecommunication Engineering Institute,Air Force Engineering University,Xi’an 710077,China)
Abstract:In order to solve the unrecognized area and long training time problems existed when using Support Vector Machine (SVM) method in network traffic classificationSVM decision tree was used in network traffic classification by using its advantages in multi class classification.The authoritative flow data sets were tested.The experiment results show that SVM decision tree method has shorter training time and better classification performance than ordinary “one on one” and “one on more”SVM method in network traffic classificationwhose classification accuracy rate can reach 98.8%.
Keywords:SVM decision tree  traffic classification  multi class classification
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号