首页 | 本学科首页   官方微博 | 高级检索  
     


Algebraic soft-decision decoding of Reed-Solomon codes
Authors:Koetter  R Vardy  A
Affiliation:Coordinated Sci. Lab., Univ. of Illinois, Urbana, IL, USA;
Abstract:A polynomial-time soft-decision decoding algorithm for Reed-Solomon codes is developed. This list-decoding algorithm is algebraic in nature and builds upon the interpolation procedure proposed by Guruswami and Sudan(see ibid., vol.45, p.1757-67, Sept. 1999) for hard-decision decoding. Algebraic soft-decision decoding is achieved by means of converting the probabilistic reliability information into a set of interpolation points, along with their multiplicities. The proposed conversion procedure is shown to be asymptotically optimal for a certain probabilistic model. The resulting soft-decoding algorithm significantly outperforms both the Guruswami-Sudan decoding and the generalized minimum distance (GMD) decoding of Reed-Solomon codes, while maintaining a complexity that is polynomial in the length of the code. Asymptotic analysis for alarge number of interpolation points is presented, leading to a geo- metric characterization of the decoding regions of the proposed algorithm. It is then shown that the asymptotic performance can be approached as closely as desired with a list size that does not depend on the length of the code.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号