首页 | 本学科首页   官方微博 | 高级检索  
     


Control rod drop analysis by finite element method using fluid–structure interaction for a pressurized water reactor power plant
Authors:KH Yoon  JY Kim  KH Lee  YH Lee  HK Kim
Affiliation:aKorea Atomic Energy Research Institute, Daedukdaero 1045 Dukjin-Dong, Yusong-Ku, Daejeon 305-353, Republic of Korea
Abstract:The control rod drop analysis is very important for safety analysis. For seismic and loss of coolant accident event, the control rod assemblies shall be capable of traveling from a fully withdrawn position to 90% insertion without any blockage and within specified time and displacement limits. The analysis has been executed by analytical method using in-house code. In this method, several field data are needed. These data are obtained from nuclear, thermal–hydraulic and mechanical design groups, peculiar codes, those work groups need to cooperate together.Following the enhancement of a computer and development of the multi-physics analysis code, a new method for the control rod drop analysis is proposed by finite element method. This analysis model incorporates the structure and fluid parts, termed as a fluid and structure interaction (FSI). Because a control rod is submerged inside a guide tube of a fuel assembly, the FSI boundary condition is applied. In this model, it is assumed that the fluid is incompressible laminar flow. The structures are modeled with the solid elements because there is no deformation due to the fluid flow. The analysis two-dimensional plane model is created in the analysis with considering an axi-symmetric geometry. Therefore, the proposed analysis model will be very simple and the design data from other fields will be unnecessary.The analysis results are compared with those of the in-house code, which have been used for a commercial design. After validation, it is found that the present analysis gives a useful tool in the design of the control rod and fuel assembly.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号