首页 | 本学科首页   官方微博 | 高级检索  
     

非线性系统响应功率谱密度的小波-Galerkin方法
引用本文:孔凡,李书进,周旺保. 非线性系统响应功率谱密度的小波-Galerkin方法[J]. 振动与冲击, 2015, 34(1): 130-134
作者姓名:孔凡  李书进  周旺保
作者单位:武汉理工大学土木工程系, 武汉, 430070
基金项目:国家自然科学基金(51408451);湖北省自然科学基金项目(2014CFB841);中央高校基本科研业务费专项资金资助
摘    要:发展了广义谐和小波在确定非线性系统随机动力响应中的应用。首先,利用周期广义谐和小波展开非线性动力微分方程,并考虑小波的联系系数后,可将动力微分方程转化为一组非线性代数方程。其次,利用Newton迭代法数值解答了非线性代数方程,得到了非线性动力响应的小波变换。最后,根据响应时变功率谱与各阶小波变换之间的关系,计算求得了非线性动力响应的功率谱密度。数值模拟显示了本文建议方法与Monte Carlo模拟之间的吻合程度。

关 键 词:广义谐和小波   功率谱密度   非线性   联系系数   Newton迭代   

Determination of power spectrum density of nonlinear system response via wavelet-galerkin approach
KONG Fan,LI Shu-jin,ZHOU Wang-bao. Determination of power spectrum density of nonlinear system response via wavelet-galerkin approach[J]. Journal of Vibration and Shock, 2015, 34(1): 130-134
Authors:KONG Fan  LI Shu-jin  ZHOU Wang-bao
Affiliation:Wuhan University of Technology, Wuhan 400070, China
Abstract:An application of generalized harmonic wavelet in the response determination of nonlinear stochastic dynamic system is developed in this paper. Specifically, first, based on the wavelet expansion of the nonlinear differential equation and the newly developed wavelet connection coefficients, the dynamic differential equation is converted into a set of nonlinear algebra equations. Next, the Newton’s method is utilized to solve algebra equations. Finally, according to the relationship between the time-varying Power Spectrum Density (PSD) and the wavelet coefficients, response PSD is therefore obtained. Pertinent numerical simulations demonstrate the reliability of the proposed technique. 
Keywords:generalized harmonic wavelet  power spectrum density  nonlinearity  connection coefficient  Newton’s iteration method
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号