首页 | 本学科首页   官方微博 | 高级检索  
     

M50NiL轴承钢淬回火组织特征及拉压疲劳裂纹的萌生
引用本文:王凯,杨卯生,曹建春.M50NiL轴承钢淬回火组织特征及拉压疲劳裂纹的萌生[J].钢铁研究学报,2022,34(4):388-398.
作者姓名:王凯  杨卯生  曹建春
作者单位:1.昆明理工大学材料科学与工程学院, 云南 昆明 650093;2.钢铁研究总院特殊钢研究院, 北京 100081
摘    要:摘要:通过拉压疲劳试验及微观组织观察研究了M50NiL轴承钢淬回火组织特征及对疲劳裂纹萌生的影响作用。结果表明,试验钢的组织主要为板条马氏体,少量δ-铁素体及M2C、MC碳化物;扫描电镜观察发现1070℃淬回火试样δ-铁素体及临近的聚集球状M2C碳化物,δ-铁素体位于晶界处,尺寸主要为4~8μm,钢中碳化物尺寸最大为2.66μm;1100℃淬回火试样δ-铁素体相界存在大量片状的M2C碳化物,尺寸在8μm以上的δ-铁素体数量增加,最大为17.51μm;1070℃淬回火试样的疲劳极限为713MPa,主要起裂源为Al2O3、Al2O3-CaO夹杂物,循环次数随夹杂物尺寸的增大而降低,且Al2O3-CaO夹杂更易引起试样的疲劳断裂;1100℃淬回火试样的疲劳极限为707MPa,主要起裂源为δ 铁素体组织缺陷,起裂源于8μm以上δ-铁素体的相界处,疲劳寿命受应力及δ-铁素体尺寸影响。

关 键 词:关键词:M50NiL轴承钢    拉压疲劳    显微组织    δ-铁素体    夹杂物  

Microstructure and tension and compression fatigue crack initiation of quenched and tempered M50NiL bearing steel
WANG Kai,YANG Maosheng,CAO Jianchun.Microstructure and tension and compression fatigue crack initiation of quenched and tempered M50NiL bearing steel[J].Journal of Iron and Steel Research,2022,34(4):388-398.
Authors:WANG Kai  YANG Maosheng  CAO Jianchun
Affiliation:1.College of Materials Science and Engineering, Kunming University of Science and Technology, Kunming 650093, Yunnan, China;2.Institute for Special Steel, Central Iron and Steel Research Institute, Beijing 100081, China
Abstract:The tensile compression fatigue test and microstructure observation were used to study the influence of the structure of M50NiL bearing steel on the fatigue crack initiation after quenching and tempering. The results show that the structure of the test steel is mainly lath martensite, a small amount of δ-ferrite, M2C and MC carbides. Scanning electron microscope observation revealed that the δ-ferrite and adjacent aggregated spherical M2C carbides of the sample quenched at 1070℃, δ-ferrites are located at the grain boundaries with the sizes of 4-8μm. The biggest size of carbides is 2.66μm. There are a large number of flaky M2C carbides in the δ-ferrite phase boundary of the 1100℃ quenched sample, and the number of δ-ferrites with a size of 8μm or more increases, and the maximum size is 17.51μm; the tensile compressive fatigue limit of the sample quenched at 1070℃ is 713MPa, and the main sources of cracking are Al2O3 and Al2O3-CaO inclusions cracking. The number of cycles decreases with the increase of the size of inclusions, and Al2O3-CaO inclusions are more likely to cause fatigue fracture of the specimen. The fatigue limit of 1100℃ sample is 707MPa. The main source of cracking is δ-ferrite structure defect. The cracking originates from the phase boundary of δ-ferrite are above 8μm. Fatigue life is affected by stress and the size of δ-ferrites.
Keywords:Key words:M50NiL bearing steel  tension and compression fatigue  microstructure  δ-ferrite  inclusion  
本文献已被 万方数据 等数据库收录!
点击此处可从《钢铁研究学报》浏览原始摘要信息
点击此处可从《钢铁研究学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号