首页 | 本学科首页   官方微博 | 高级检索  
     

一种融合时间特征的非侵入式负荷辨识决策方法
引用本文:田正其,徐晴,李如意,赵双双. 一种融合时间特征的非侵入式负荷辨识决策方法[J]. 电测与仪表, 2022, 59(4): 144-151. DOI: 10.19753/j.issn1001-1390.2022.04.021
作者姓名:田正其  徐晴  李如意  赵双双
作者单位:国网江苏省电力有限公司营销服务中心,南京210019;国家电网有限公司电能计量重点实验室,南京210019,河南许继仪表有限公司,河南许昌461000
基金项目:国家电网有限公司总部科技项目(5400-201918180A-0-0-00);
摘    要:针对家庭负荷用电场景中负荷类别的不确定性,以及非侵入式负荷监测设备数据库中负荷特征库的不完备等极易导致负荷辨识准确率下降的问题,文中在利用电气特征的基础上,提出了一种融合负荷运行时长、运行时段、工作周期及假期特性等时间特征的非侵入式负荷辨识决策方法.在该方法中,通过分段归一化的Mean-shift聚类方法对检测得到的负...

关 键 词:非侵入式  负荷辨识  时间特征  mean-shift聚类  贝叶斯决策方法
收稿时间:2019-11-27
修稿时间:2019-12-23

Non-intrusive load identification decision method based on time signatures
Tian Zhengqi,Xu Qing,Li Ruyi and Zhao Shuangshuang. Non-intrusive load identification decision method based on time signatures[J]. Electrical Measurement & Instrumentation, 2022, 59(4): 144-151. DOI: 10.19753/j.issn1001-1390.2022.04.021
Authors:Tian Zhengqi  Xu Qing  Li Ruyi  Zhao Shuangshuang
Affiliation:Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd,Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd,Henan Xuji Instrument Co., Ltd.,Electric Power Research Institute of State Grid Jiangsu Electric Power Co,Ltd
Abstract:Considering the problems of the uncertainty of the load type in household scenario and the incompleteness of the load signature database in the non-intrusive load database, which can easily lead to the decrease of the accuracy in load identification, this paper proposes a load identification method to cope with these problems. On the base of electrical signatures, this method also use time signature which includes the characteristics of the length of operation time, load operation time, working period and vacation. In this method, firstly, we use the piecewise- normalization mean-shift clustering method to cluster the detected load event features and obtain the number of potential load types. Then we count the time signature and power signature of load events to get their probability. And the Bayesian method is used to identify the load by decision-making. Finally, this paper uses the AMPds public data set to do the actual test, the experimental results show that this method has the good identification effect to this scene.
Keywords:non-intrusive   load identification   time signature   mean-shift clustering   Bayesian decision-making method
本文献已被 万方数据 等数据库收录!
点击此处可从《电测与仪表》浏览原始摘要信息
点击此处可从《电测与仪表》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号