首页 | 本学科首页   官方微博 | 高级检索  
     

一种三阶多项式相位信号去噪的字典学习算法
引用本文:欧国建, 杨士中, 蒋清平, 曹海林. 一种三阶多项式相位信号去噪的字典学习算法[J]. 电子与信息学报, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726
作者姓名:欧国建 杨士中 蒋清平 曹海林
作者单位:(重庆大学飞行器测控与通信教育部重点实验室 重庆 400044)
(重庆电子工程职业学院 重庆 401331)
基金项目:国家自然科学基金(51377179),中央高校基本科研业务费(CDJZR12160020)和重庆教委项目(KJ120510)资助课题
摘    要:在加性高斯白噪声的影响下,对于三阶多项式相位信号(CPS),经典的字典学习算法,如K-means Singular Value Decomposition(K-SVD), 递归最小二乘字典学习算法(RLS-DLA)和K-means Singular Value Decomposition Denoising (K-SVDD)得到的学习字典,通过稀疏分解,不能有效去除信号的噪声。为此,该文提出了针对CPS去噪的字典学习算法。该算法首先利用RLS-DLA对的字典进行学习;其次采用非线性最小二乘(NLLS)法修改了该算法对字典更新的部分;最后对训练后的字典通过对信号的稀疏表示得到重构信号。对比其它的字典学习算法,该算法的信噪比(SNR)值明显高于其它算法,而均方误差(MSE)显著低于其它算法,具有明显的降噪效果。实验结果表明,采用该算法得到的字典通过稀疏分解,信号的平均信噪比比K-SVD, RLS-DLS和K-SVDD高出9.55 dB, 13.94 dB和9.76 dB。

关 键 词:三阶多项式相位信号   递归最小二乘字典学习算法   字典学习   非线性最小二乘法   曲线拟合
收稿时间:2013-05-23
修稿时间:2013-10-25

A Dictionary Learning Algorithm for Denoising Cubic Phase Signal
Ou Guo-Jian , Yang Shi-Zhong, Jiang Qing-Ping, Cao Hai-Lin. A Dictionary Learning Algorithm for Denoising Cubic Phase Signal[J]. Journal of Electronics & Information Technology, 2014, 36(2): 255-259. doi: 10.3724/SP.J.1146.2013.00726
Authors:Ou Guo-jian Yang Shi-zhong Jiang Qing-ping Cao Hai-lin
Affiliation:(Key Laboratory of Aerocraft Tracking Telemetering & Command and Communication of Ministry of Education, Chongqing University, Chongqing 400044, China)
(Chongqing College of Electronic Engineering, Chongqing 401331, China)
Abstract:Under the influence of additive white Gaussian noise, the classical dectionary learning algorithms, such as K-means Singular Value Decomposition (K-SVD), Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA) and K-means Singular Value Decomposition Denoising (K-SVDD), can not effectively remove the noise of Cubic Phase Signal (CPS). A novel dictionary learning algorithm for denoising CPS is proposed. Firstly,the dictionary is learned by using the RLS-DLA algorithm. Secondly,the update stage of the RLS-DLA algorithm is modified by using Non-Linear Least Squares (NLLS) in the algorithm. Finally, the signal is reconstructed via sparse representations over learned dictionary.Signal to Noise Ratio (SNR) obtained by using the novel dictionary learning algorithm is obviously higher than other algorithms,and the Mean Squares Error (MSE)  obtained by using the novel dictionary learning algorithm is obviously lower than other algorithms. Therefore there is obviously denoising performance for using the dictionary learned by the algorithm to sparsely represent CPS. The experimental results show that the average SNR obtained by using the algorithm is 9.55 dB, 13.94 dB and 9.76 dB higher than K-SVD, RLS-DLS and K-SVDD.
Keywords:Cubic Phase Signal (CPS)  Recursive Least Squares Dictionary Learning Algorithm (RLS-DLA)  Dictionary learning  Non-Linear Least Squares (NLLS)  Curve fitting
本文献已被 CNKI 等数据库收录!
点击此处可从《电子与信息学报》浏览原始摘要信息
点击此处可从《电子与信息学报》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号