首页 | 本学科首页   官方微博 | 高级检索  
     

基于时间-小波能量谱熵的滚动轴承故障诊断研究
引用本文:唐贵基,邓飞跃,何玉灵,王晓龙. 基于时间-小波能量谱熵的滚动轴承故障诊断研究[J]. 振动与冲击, 2014, 33(7): 68-72
作者姓名:唐贵基  邓飞跃  何玉灵  王晓龙
作者单位:华北电力大学 能源动力与机械工程学院,河北 保定 071003
基金项目:中央高校基本科研业务费专项基金项目(13QN49)
摘    要:针对轴承振动信号中存在周期性冲击这一现象,提出了时间-小波能量谱熵的计算方法,用于滚动轴承的故障诊断。首先构造脉冲小波,采用连续小波变换的方法得到时间域内小波能量谱,再沿时间轴计算能量谱熵,定量描述振动信号沿时间的分布情况,不同故障下轴承的冲击振动随时间变化程度不同,其时间-小波能量谱熵值也就不同。将不同故障轴承信号的时间-小波能量谱熵作为向量特征输入建立支持向量机,实现了对轴承的工作状态和故障类型的判断。实验结果表明,时间-小波能量谱熵可以有效地对滚动轴承进行故障诊断。

关 键 词:滚动轴承  故障诊断  连续小波变换    支持向量机  
收稿时间:2013-05-28
修稿时间:2013-06-21

Rolling Element Bearing Fault Diagnosis Based on Time-wavelet Energy Spectrum Entropy
TANG Gui-ji,DENG Fei-yue,HE Yu-ling,Wang Xiao-long. Rolling Element Bearing Fault Diagnosis Based on Time-wavelet Energy Spectrum Entropy[J]. Journal of Vibration and Shock, 2014, 33(7): 68-72
Authors:TANG Gui-ji  DENG Fei-yue  HE Yu-ling  Wang Xiao-long
Affiliation:School of Energy, Power and Mechanical Engineering, North China Electric Power University, Baoding 071003
Abstract:There have periodic impulses in vibration signals of bearing, so a new method, so called time-wavelet energy spectrum entropy, is proposed for rolling element bearing fault diagnosis. Firstly, the impulse response wavelet is constructed to extract wavelet energy spectrum in time domain by using continuous wavelet transform, then energy spectrum entropy which represents vibration signals quantitatively change with time is calculated along the time axis, bearings with different faults have different variation complexity, and the entropy is different. To identify the fault pattern and condition of bearing, entropy of different fault signal could as input vectors of support vector machine. Practical examples showed the method can diagnose efficiently faults of rolling element bearings.
Keywords:Rolling element bearingFault diagnosisContinuous wavelet transformEntropySupport vector machine (SVM)
本文献已被 CNKI 等数据库收录!
点击此处可从《振动与冲击》浏览原始摘要信息
点击此处可从《振动与冲击》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号