首页 | 本学科首页   官方微博 | 高级检索  
     

结合人眼对比度敏感视觉特性的视频质量客观评价
引用本文:姚军财,刘贵忠. 结合人眼对比度敏感视觉特性的视频质量客观评价[J]. 光学精密工程, 2016, 24(3): 659-667. DOI: 10.3788/OPE.20162403.0659
作者姓名:姚军财  刘贵忠
作者单位:1. 西安交通大学 电子与信息工程学院, 陕西 西安 710049;2. 陕西理工学院 物理与电信工程学院, 陕西 汉中 723000
基金项目:国家自然科学基金资助项目(61301237),陕西省科技新星计划资助项目(2015KJXX-42)
摘    要:结合人眼对亮度、色度、对比度以及运动目标的感知特性,提出了一种基于人眼对视频内容感知的视频质量客观评价方法。该方法将视频分为空域和时域信息分别描述,并利用人眼感知特性,从视频的亮度、色度、对比度以及目标运动4个方面提取特征,计算其强度。然后以人眼对比度敏感值作为强度的权重因子求和,构建人眼感知视频内容模型。最后,分别以此模型模拟人眼感知源视频和失真后的视频,计算每对应单元的所有像素之间和运动矢量之间的强度差;以强度差作为视频质量评价的分数,构建视频质量客观评价模型。采用LIVE数据库中的6个源视频和48个测试视频进行了质量评价实验,并与视频质量专家组(VQEG)推荐的5个较好的视频质量客观评价模型进行了对比分析。结果表明:提出模型的视频质量评价结果与主观评价结果之间的线性相关性系数达到0.8705,显示了较好的一致性,评价效果优于5个典型的模型。

关 键 词:人眼视觉特性  视频质量评价  亮度  色度  对比度  相关系数
收稿时间:2015-12-08

Video quality objective assessment combined contrast sensitivity characteristics of human visual system
YAO Jun-cai,LIU Gui-zhong. Video quality objective assessment combined contrast sensitivity characteristics of human visual system[J]. Optics and Precision Engineering, 2016, 24(3): 659-667. DOI: 10.3788/OPE.20162403.0659
Authors:YAO Jun-cai  LIU Gui-zhong
Affiliation:1. School of Electronic and Information Engineering, Xi'an Jiaotong University, Xi'an 710049, China;2. School of Physics and Telecommunication Engineering, Shaanxi University of Technology, Hanzhong 723000, China
Abstract:In combination of the perceiving characteristics of human eyes for brightness, chroma, contrast and moving targets, an objective assessment method of video quality based on contrast sensitivity characteristics of a human visual system was proposed. In the method, the video was divided into spatial and time domains to be described. The features of image were extracted from four aspects, brightness, chroma, contrast, and target motion based on the perceiving characteristics of human eyes and their intensities were computed. Then, the contrast sensitivity values of human eyes were used as the weight factors of the intensity to sum and to construct the model of human eye perception content of the video. Finally, original and distorted videos respectively perceived by imitating eyes with this model, and the intensity differences of the pixels and the motion vectors between arbitrary corresponding units of two videos were computed. By taking the intensity differences as the scores of video quality objective evaluation, the objective evaluation model for video quality was constructed by them. The experiments were carried out with 6 source videos and 48 test videos proposed by LIVE database, and the 5 classic video quality evaluation models recommended by the Video Quality Expert Group(VQEG) were compared with the proposed model. The results show that the linear correlation coefficient between video quality evaluated by the proposed model and the subjective evaluation results reaches 0.8705. They have good consistency, and evaluation effects are better than those of other 5 classical models.
Keywords:human visual system characteristics  video quality assessment  brightness  chroma  contrast  correlation coefficients
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光学精密工程》浏览原始摘要信息
点击此处可从《光学精密工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号