首页 | 本学科首页   官方微博 | 高级检索  
     


A New Instrument for the Measurement of the Thermal Conductivity of Fluids
Authors:S G S Beirão  M L V Ramires  M Dix  C A Nieto de Castro
Affiliation:(1) Departamento de Química e Bioquímica and Centro de Ciências Moleculares e Materiais, Faculdade de Ciências da Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal;(2) Imperial College of Science and Technology, London, United Kingdom
Abstract:The transient hot-wire technique is at present the best technique for obtaining standard reference data for the thermal conductivity of fluids. It is an absolute technique, with a working equation and a complete set of corrections reflecting departures from the ideal model, where the principal variables are measured with a high degree of accuracy. It is possible to evaluate the uncertainty of the experimental thermal conductivity data obtained using the best metrological recommendations. The liquids proposed by IUPAC (toluene, benzene, and water) as primary standards were measured with this technique with an uncertainty of 1% or better (95% confidence level). Pure gases and gaseous mixtures were also extensively studied. It is the purpose of this paper to report on a new instrument, developed in Lisbon, for the measurement of the thermal conductivity of gases and liquids, covering temperature and pressure ranges that contain the near-critical region. The performance of the instrument for pressures up to 15 MPa was tested with gaseous argon, and measurements on dry air (Synthetic gas mixture, with molar composition certified by Linde AG, Wiesbaden, Germany, Ar – 0.00920; O2 – 0.20966; N2 – 0.78114), from room temperature to 473 K and pressures up to 10 MPa are also reported. The estimated uncertainty is 1%.M. L. V. Ramires: DeceasedPaper presented at the Seventeenth European Conference on Thermophysical Properties, September 5–8, 2005, Bratislava, Slovak Republic.
Keywords:air  argon  fluids  thermal conductivity  transient hot-wire
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号