首页 | 本学科首页   官方微博 | 高级检索  
     

新型的动态粒子群优化算法
引用本文:王润芳,张耀军,裴志松. 新型的动态粒子群优化算法[J]. 计算机工程与应用, 2011, 47(16): 32-34. DOI: 10.3778/j.issn.1002-8331.2011.16.010
作者姓名:王润芳  张耀军  裴志松
作者单位:1.长春工业大学 人文信息学院,长春 130122 2.信阳农业高等专科学校 计算机系,河南 信阳 464000
摘    要:为了解决动态改变惯性权重的自适应粒子群算法不易跳出局部最优的问题,提出了一种自适应变异的动态粒子群优化算法。在算法中引入了自适应学习因子和自适应变异策略,从而使算法具有动态自适应性,能够较容易地跳出局部最优。对几种典型函数的测试结果表明,该算法的收敛速度明显优于文献算法,收敛精度也有所提高。

关 键 词:粒子群优化算法  惯性权重  自适应变异  学习因子  
修稿时间: 

Novel particle swarm optimization algorithm
WANG Runfang,ZHANG Yaojun,PEI Zhisong. Novel particle swarm optimization algorithm[J]. Computer Engineering and Applications, 2011, 47(16): 32-34. DOI: 10.3778/j.issn.1002-8331.2011.16.010
Authors:WANG Runfang  ZHANG Yaojun  PEI Zhisong
Affiliation:1.College of Humanities & Information,Changchun University of Technology,Changchun 130122,China 2.Department of Computer,Xinyang Agricultural College,Xinyang,Henan 464000,China
Abstract:To solve the problem that adaptive particle swarm algorithm with dynamically changing inertia weigh algorithm is apt to trap in local optimum,a dynamic particle swarm optimization algorithm with adaptive mutation is proposed.The adaptive learning factor and adaptive mutation strategy are introduced in this new algorithm,so that proposed algorithm can easily jump out of local optimum with effective dynamic adaptability.The test experiments with three well-known benchmark functions show that the convergence speed of proposed algorithm is significantly superior to existing algorithms,and the convergence accuracy of algorithm is also increased.
Keywords:particle swarm optimization algorithm  inertia weight  adaptive mutation  learning factor
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《计算机工程与应用》浏览原始摘要信息
点击此处可从《计算机工程与应用》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号