首页 | 本学科首页   官方微博 | 高级检索  
     

基于改进遗传算法的不规则图形排样
引用本文:唐坚刚,刘丛,张丽红. 基于改进遗传算法的不规则图形排样[J]. 计算机工程, 2010, 36(21): 185-187
作者姓名:唐坚刚  刘丛  张丽红
作者单位:(1. 上海医疗器械高等专科学校图文信息中心,上海 200093;2. 上海理工大学光电信息与计算机工程学院,上海 200093)
摘    要:针对大规模零件和布料优化排样问题,研究遗传算法在智能排样中的应用及其在智能优化排样中的优缺点。以传统遗传算法优化排样为基础,提出一种改进的基于遗传算法的优化排样算法,利用图形间的相似度对图形群体进行分类,降低遗传算法的时间复杂度。实验结果证明,该方法在时间复杂度上优于传统的遗传算法优化排样,适用于大规模的图形排样系统。

关 键 词:排样  遗传算法  智能排样  相似度  时间复杂度

Irregular Graph Stock Layout Based on Improved Genetic Algorithm
TANG Jian-gang,LIU Cong,ZHANG Li-hong. Irregular Graph Stock Layout Based on Improved Genetic Algorithm[J]. Computer Engineering, 2010, 36(21): 185-187
Authors:TANG Jian-gang  LIU Cong  ZHANG Li-hong
Affiliation:(1. Graphic Information Center, Shanghai Medical Instrumental College, Shanghai 200093, China; 2. College of Optical and Electronical Information & Computer Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China)
Abstract:Aiming at problems of large scale spare parts and cloth optimizing, this paper analyzes the application of improved generic algorithm in the irregular graph stock layout, and researches the advantage and disadvantage of generic algorithm in the intelligent optimizing stock layout. Based on conventional generic algorithm, it puts forward an improved algorithm which classifies graph group by their similarity degree in order to simplify time complicity of generic algorithm. Experimental results prove that this means outgoes the conventional one in time complicity, so it is applied to large scale of graph stock layout system.
Keywords:stock layout  generic algorithm  intelligent stock layout  similarity degree  time complicity
本文献已被 维普 万方数据 等数据库收录!
点击此处可从《计算机工程》浏览原始摘要信息
点击此处可从《计算机工程》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号