首页 | 本学科首页   官方微博 | 高级检索  
     


Critical study of existing solutions for a penny-shaped interface crack, comparing with a new boundary element solution allowing for frictionless contact
Authors:Enrique Graciani  Vladislav Manti?  Federico París
Affiliation:Grupo de Elasticidad y Resistencia de Materiales, Escuela Técnica Superior de Ingenieros de Sevilla, Camino de los Descumbrimientos s/n, 41092 Sevilla, Spain
Abstract:A numerical study of the fundamental problem of a pressurized penny-shaped crack at the interface of two dissimilar half spaces is carried out allowing for the possibility of frictionless contact between crack faces. A new, highly accurate axi-symmetric formulation of the boundary element method (BEM) for the solution of elastic contact problems is employed. The correctness and accuracy of available predictions of different kinds for several key characteristics of the solution of this problem are checked. First, comparison of the BEM results for the near-tip contact length shows a very good agreement with some existing predictions. Second, the global solution obtained by BEM is compared with existing asymptotic solutions, obtained with both the open and the frictionless contact models. BEM results show that at the closest neighborhood to the crack tip the global solution of the problem is governed by the first term of the asymptotic solution of the frictionless contact model (up to a distance of the order of a fraction of the near-tip contact length). After a small transition region, in an adjacent surrounding zone whose extent is almost independent of the near-tip contact length, the global solution of the problem is governed by the first term of the asymptotic solution of the open model. As a result of the comparison presented, the regions in which the classical fracture parameters, stress intensity factor (SIF) and energy release rate, can be accurately obtained from the global numerical solution of a crack of this kind have been determined. Third, BEM results and previous estimations show certain discrepancies with a recently published closed form solution of the near-tip contact length and the mode II SIF of the frictionless contact model. A new closed form expression of this mode II SIF, derived from the asymptotic solution of the open model, is proposed in this paper.
Keywords:Boundary element analysis  Fracture mechanics  Interface fracture  Stress intensity factor  Small-scale contact
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号