首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and dynamics of thin polymer films: a case study with the bond-fluctuation model
Authors:C MischlerJ Baschnagel  S DasguptaK Binder
Affiliation:a Institut für Physik, Johannes-Gutenberg Universität, D-55099 Mainz, Germany
b Institut Charles Sadron, 6 rue Boussingault, F-67083 Strasbourg Cedex, France
c Department of Physics, University of Calcutta, 92 A.P.C. Road, Calcutta 700009, India
Abstract:This paper reports Monte Carlo simulation results of a polymer melt of short, non-entangled chains which are embedded between two impenetrable walls. The melt is simulated by the bond-fluctuation lattice model under athermal conditions, i.e. only excluded volume interactions between the monomers and between the monomers and the walls are taken into account. In the simulations, the wall separation is varied from about one to about 15 times the bulk radius of gyration Rg. The confinement influences both static and dynamic properties of the films: Chains close to the walls preferentially orient parallel to it. This parallel orientation decays with increasing distances from the wall and vanishes for distances larger than about 2Rg. Strong confinement effects are therefore observed for film thicknesses D?4Rg. The preferential alignment of the chains with respect to the walls suppresses reorientations in perpendicular direction, whereas parallel reorientations take place in an environment of high monomer density. Therefore, they have a relaxation time larger than that of the bulk. On the other hand, the influence of confinement on the translation motion of the chains parallel to the walls is very weak. It almost coincides with the bulk behavior even if D≈1.5Rg. Despite these differences between translational and reorientational dynamics, their behavior can be well reproduced by a variant of Rouse theory which only assumes orthogonality of the Rouse modes and determines the necessary input from the simulation.
Keywords:68  15  +e  61  20  Ja  61  25  Hq
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号