首页 | 本学科首页   官方微博 | 高级检索  
     


Properties of fly ash-modified cement mortar-aggregate interfaces
Authors:Y.L. Wong   L. Lam   C.S. Poon  F.P. Zhou
Affiliation:

a Department of Civil and Structural Engineering, Hong Kong Polytechnic University, Hong Kong, People's Republic of China

b Department of Building and Construction, City University of Hong Kong, Hong Kong, People's Republic of China

Abstract:This paper investigates the effect of fly ash on strength and fracture properties of the interfaces between the cement mortar and aggregates. The mortars were prepared at a water-to-binder ratio of 0.3, with fly ash replacements from 15 to 55%. Notched mortar beams were tested to determine the flexural strength, fracture toughness, and fracture energy of the plain cement and fly-ash modified cement mortars. Another set of notched beams with mortar-aggregate interface above the notch was tested to determine the flexural strength, fracture toughness, and fracture energy of the interface. Mortar-aggregate interface cubes were tested to determine the splitting strength of the interface. It was found that a 15% fly ash replacement increased the interfacial bond strength and fracture toughness. Fly ash replacements at the levels of 45 and 55% reduced the interfacial bond strength and fracture toughness at 28 days, but recovered almost all the reduction at 90 days. Fly ash replacement at all levels studied increased the interfacial fracture energy. Fly ash contributed to the interfacial properties mainly through the pozzolanic effect. For higher percentages of replacement, the development of interfacial bond strength initially fell behind the development of compressive strength. But at later ages, the former surpassed the latter. Strengthening of the interfaces leads to higher long-term strength increases and excellent durability for high-volume fly ash concrete.
Keywords:Fly ash   Mortar   Aggregate   Bond strength   Fracture toughness
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号