首页 | 本学科首页   官方微博 | 高级检索  
     


Expression of transforming growth factor-beta 1 messenger ribonucleic acid and the modulation of deoxyribonucleic acid synthesis by transforming growth factor-beta 1 in human endometrial cells
Authors:PB Marshburn  AM Arici  ML Casey
Affiliation:Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center at Dallas 75235-9032.
Abstract:OBJECTIVE: The purpose of this study was (1) to evaluate the potential sites of transforming growth factor-beta 1 synthesis in human endometrium by analyzing separated endometrial glands and stromal cells for transforming growth factor-beta 1 messenger ribonucleic acid by Northern analysis of total ribonucleic acid and (2) to investigate the effects of transforming growth factor-beta 1 on deoxyribonucleic acid synthesis in endometrial epithelial and stromal cells in culture. STUDY DESIGN: Endometrial glands and stroma from proliferative and secretory endometrium were isolated after collagenase treatment of endometrial tissue minces and were analyzed for transforming growth factor-beta 1 messenger ribonucleic acid by Northern analysis. We studied the effects of estradiol-17 beta and transforming growth factor-beta 1 on deoxyribonucleic acid synthesis in endometrial epithelium and transforming growth factor-beta 1 on stromal cells in culture by evaluating tritiated thymidine incorporation into trichloroacetic acid-precipitable material. RESULTS: Transforming growth factor-beta 1 messenger ribonucleic acid was detected for Northern analysis in separated endometrial stromal cells in levels that were greatest during the secretory phase and in greater levels than in epithelial cells from that same tissue. Transforming growth factor-beta 1 messenger ribonucleic acid in glandular epithelium in culture was not increased to detectable levels by treatment with transforming growth factor-beta 1. Deoxyribonucleic acid synthesis in endometrial glandular epithelium was inhibited by transforming growth factor-beta 1, but transforming growth factor-beta 1 stimulated deoxyribonucleic acid synthesis in endometrial stromal cells in culture. After treatment for 5 days with estradiol-17 beta (10(-8) mol/L), deoxyribonucleic acid synthesis in endometrial glands in culture was decreased by 40%. Transforming growth factor-beta 1 (1 ng/ml) did not alter this effect of estradiol-17 beta on deoxyribonucleic acid synthesis. CONCLUSIONS: Transforming growth factor-beta 1 acts to decrease deoxyribonucleic acid synthesis in epithelial cells and to increase it in stromal cells isolated from human endometrium and maintained in monolayer culture. Transforming growth factor-beta 1, potentially of stromal cell origin, could participate in the regulation of endometrial cell proliferation and differentiation in vivo.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号