首页 | 本学科首页   官方微博 | 高级检索  
     

基于信息熵理论和Parks聚类分析的水电机组振动故障诊断
引用本文:安学利,周建中,向秀桥,莫莉,罗志猛. 基于信息熵理论和Parks聚类分析的水电机组振动故障诊断[J]. 大电机技术, 2009, 0(4)
作者姓名:安学利  周建中  向秀桥  莫莉  罗志猛
作者单位:华中科技大学水电与数字化工程学院,武汉,430074
基金项目:国家自然科学基金项目(50579022);;国家自然科学基金重点项目(50539140);;科技部水利部公益性行业科研专项经费项目(200701008)
摘    要:针对水电机组振动故障与征兆之间复杂的非线性关系,将经过整理的水电机组典型故障分别作为标准故障类,每个标准故障类和它所对应的具有代表性的特征参数构成故障类特征向量,建立标准故障特征参数矩阵。采用信息熵理论和Parks聚类分析方法对待检样本进行聚类分析,从而辨识出待检样本最有可能属于哪个故障类,即最有可能是哪种故障。通过实例检验表明理论计算与现场检查结果相符,证明该方法能有效地确定故障类型和发生故障的部位,适合于故障诊断中自动模式识别,具有良好的实际应用前景,为水电机组状态监测及故障诊断提供了一种新途径。

关 键 词:水电机组  振动故障诊断  信息熵理论  Parks聚类分析  

Vibration Fault Diagnosis of Hydraulic Generating Units Based on Information Entropy Theory and Parks Clustering Analysis
AN Xue-li,ZHOU Jian-zhong,XIANG Xiu-qiao,MO Li,LUO Zhi-meng. Vibration Fault Diagnosis of Hydraulic Generating Units Based on Information Entropy Theory and Parks Clustering Analysis[J]. Large Electric Machine and Hydraulic Turbine, 2009, 0(4)
Authors:AN Xue-li  ZHOU Jian-zhong  XIANG Xiu-qiao  MO Li  LUO Zhi-meng
Affiliation:College of Hydroelectric and Digitalization Engineering;Huazhong University of Science and Technology;Wuhan;430074;China
Abstract:The faults of hydraulic generating units are classified into different clusters by the characteristic parameters using statistical analysis methods. A characteristic parameters matrix of standard faults is established. Clustering analysis has been used to identify the new sample. This clustering technique is based on information entropy theory and Parks clustering analysis, which has been tested in a real application. Results demonstrated that the proposed method is a good candidate to be used as an online ...
Keywords:hydraulic generating units  vibration fault diagnosis  information entropy theory  Parks clustering analysis  
本文献已被 CNKI 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号