首页 | 本学科首页   官方微博 | 高级检索  
     

基于模糊预测器模型的混沌时间序列预测
引用本文:张立权,邵诚. 基于模糊预测器模型的混沌时间序列预测[J]. 信息与控制, 2005, 34(6): 660-664
作者姓名:张立权  邵诚
作者单位:大连理工大学信息与控制研究中心,辽宁,大连,116024
基金项目:国家科技攻关计划资助项目(2001BA204B01),教育部骨干教师计划资助项目(69825106)
摘    要:基于数据挖掘思想,使用兴趣度度量和改进的梯度下降法,提出一种新的、具有自学习能力的模糊方法来建模和预测混沌时间序列.所提方法不仅能同时辨识模糊模型、调整其参数及确定输出空间的最优模糊子集,而且解决了梯度下降法中存在的收敛速度和振荡之间的冲突问题.仿真结果表明新方法是有效的、准确的,它能很好地辨识系统的特征,并且提供了一种混沌时间序列预测的新方法.

关 键 词:混沌  数据挖掘  预测  模糊模型
文章编号:1002-0411(2005)06-0660-05
收稿时间:2005-05-13
修稿时间:2005-05-13

Prediction of Chaotic Time Series Based on the Fuzzy Predictor Model
ZHANG Li-quan,SHAO Cheng. Prediction of Chaotic Time Series Based on the Fuzzy Predictor Model[J]. Information and Control, 2005, 34(6): 660-664
Authors:ZHANG Li-quan  SHAO Cheng
Affiliation:Research Center of Information and Control, Dalian University of Technology, Dalian 116024, China
Abstract:On the basis of data mining,a new self-learning fuzzy method is developed to model and predict chaotic time series,by means of interest measure and improved gradient descent method.The proposed method can not only identify the fuzzy model,update its parameters and determine the optimal output fuzzy sets simultaneously,but also resolve the conflicts between convergence speed and oscillation existing in gradient descent method.Simulation results show the effectiveness and accuracy of the proposed method.It can identify the system characteristics quite well and provide a new way to predict the chaotic time series.
Keywords:chaos  data mining  prediction  fuzzy model  
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《信息与控制》浏览原始摘要信息
点击此处可从《信息与控制》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号