首页 | 本学科首页   官方微博 | 高级检索  
     

一种新颖的径向基函数(RBF)网络学习算法
引用本文:孙健,申瑞民,韩鹏. 一种新颖的径向基函数(RBF)网络学习算法[J]. 计算机学报, 2003, 26(11): 1562-1567
作者姓名:孙健  申瑞民  韩鹏
作者单位:上海交通大学计算机科学与工程系,上海,200030
摘    要:以提高RBF网络泛化能力为着眼点,提出了一种新型的网络结构自适应学习算法.该算法采用衰减聚类半径的聚类算法来确定初始的隐层结构,然后通过调整包含样本类别信息的扩展聚类不纯度来修正隐层结构,直至满足所有扩展聚类不纯度均小于等于不纯度均值以及所有扩展聚类方差均不超过方差均值这两个条件.这样就确定了隐层的最终结构.在确定隐层结构之后,采用反向传播算法来训练隐层与输出层之间的连接权重.经双螺旋线问题仿真试验验证,该算法确实具有较强的泛化能力.

关 键 词:单隐层前馈神经网络 径向基函数 网络学习算法 机器学习 支持向量机
修稿时间:2002-06-06

An Original RBF Network Learning Algorithm
SUN Jian SHEN Rui-Min HAN Peng. An Original RBF Network Learning Algorithm[J]. Chinese Journal of Computers, 2003, 26(11): 1562-1567
Authors:SUN Jian SHEN Rui-Min HAN Peng
Abstract:This paper proposes an original RBF network structure learning algorithm aiming at improving its generalization ability. The algorithm determines the initial network hidden structure by decayed radius clustering algorithm, then modifies the hidden structure by adjusting the impurity of generalized clusters containing the classification information of the training samples until the conditions that all clusters' impurities are less than the average impurity level and all variants are less than the average variant level are satisfied. Then we get the final hidden structure. After determining the hidden structure, the back-propagation algorithm is used to training the weights between the hidden layer and output layer. The experiment of two spirals problem proves that our algorithm has higher generalization ability indeed.
Keywords:RBF network  generalization ability  regularization theory  statistics learning theory  
本文献已被 CNKI 维普 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号