首页 | 本学科首页   官方微博 | 高级检索  
     


Design of a MoOx/Au/MoOx transparent electrode for high-performance OLEDs
Affiliation:1. Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, 1 Seocheon-dong, Yongin, Gyeonggi-do 446-701, Republic of Korea;2. Samsung Display, OLED R&D Center, Yongin, Gyeonggi-do 446-711, Republic of Korea
Abstract:A MoOx(top)/Au/MoOx(bottom) multilayer was systematically designed for transparent electrodes in green OLEDs in terms of optical transmission and series resistance of the device. The enhancement in optical transmission of MoOx/Au/MoOx (MAM) structures is a result of a series of events, including the optical interference within the multilayers and the interaction of light with surface plasmon polaritons in the metal layer. For the maximum transmission, the optical interference occurring within the multilayers was simulated using a transfer matrix model to determine the optimum thickness of MoOx layers, and then the thickness of the Au interlayer was experimentally optimized for extraordinary optical transmission. In addition, the series resistance added by the top MoOx was characterized to confirm its negligible impact on the performance of the device. The optimum MoOx (40 nm)/Au (10 nm)/MoOx (40 nm) structure showed much higher transmission in the green-red region and lower sheet resistance than indium tin oxide (ITO). We have fabricated MAM-based OLEDs the driving voltage of which was significantly reduced to ∼5.5 V at a current density of 20 mA/cm2, and the current efficiency (11.46 Cd/A) was higher than that (10.91 Cd/A) of ITO-based OLEDs, demonstrating that the MAM electrode is a potential replacement for ITO in optical devices.
Keywords:OLEDs  Transparent electrode  OMO electrode
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号