首页 | 本学科首页   官方微博 | 高级检索  
     


Upconversion nanoparticles for sensitive and in-depth detection of Cu(2+) ions
Authors:Chunxia Li  Jinliang Liu  Sylvie Alonso  Fuyou Li  Yong Zhang
Affiliation:Department of Bioengineering, Faculty of Engineering, National University of Singapore, Singapore 117574. biezy@nus.edu.sg.
Abstract:Detection of Cu(2+) ions and study of their subcellular distribution in physiological processes are of considerable significance because of their potential environmental and biological applications. Some fluorescence based sensors have been developed for selective detection of Cu(2+) ions, based on organic fluorescent probes that specifically bind to Cu(2+) ions. However, these sensors are not suitable for detection in biological samples due to the short penetration depth of UV/visible light used to excite the fluorescent probes. The use of near-infrared (NIR) light can afford penetration depths of an order of magnitude greater than that of visible light, however, a material that can convert NIR light to visible light is required. A facile method has been developed for in-depth detection of Cu(2+) ions based on fluorescence upconversion. A mesoporous silica shell is coated on upconversion nanoparticles (UCNPs) and a Cu(2+) ion sensitive fluorescent probe, rhodamine B hydrazide, is incorporated into the mesoporous silica. Upon excitation by a NIR light, the UCNPs emit visible light to excite the Cu(2+)-sensitive fluorescent probe. Because of the unique optical properties of UCNPs and their ability to convert NIR light to visible light, this is a feasible method for sensitive and in-depth detection of Cu(2+) ions in a complex biological or environmental sample due to the low autofluorescence and the high penetration depth of NIR light.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号