首页 | 本学科首页   官方微博 | 高级检索  
     


Optical properties and luminescence dynamics of Eu3+-doped terbium orthophosphate nanophosphors
Authors:Ruan Ye  Xiao Qingbo  Luo Wenqin  Li Renfu  Chen Xueyuan
Affiliation:Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 350002, People's Republic of China.
Abstract:The development of luminescent inorganic nanocrystals (NCs) doped with rare-earth (RE) ions has attracted increasing interest owing to their distinct optical properties and versatile applications in time-resolved bioassays, multiplex biodetection, DNA hybridization and bioimaging. Hexagonal TbPO4:Eu3+ NCs (10-30 nm) were synthesized via a facile hydrothermal method assisted with oleic acid (OA) surfactants, which exhibit tunable emissions from green to red by varying the concentration of Eu3+. The Tb3+-to-Eu3+ energy transfer efficiency observed reaches up to 94%. Different from their bulk counterparts, a new interface-state band (316 nm) in addition to the commonly observed spin-forbidden 4f-5d transition band (265 nm) of Tb3+ was found to be dominant in the excitation spectrum of NCs due presumably to the formation of surface TbPO4/OA complexes, which provides an additional excitation antenna in practical utilization. Two kinds of luminescence sites of Eu3+ in TbPO4 NCs, with the site symmetry of C2 or C1, were identified based on the emission spectra at 10 K and room temperature. Furthermore, the photoluminescence (PL) dynamics of Tb3+ ions in pure TbPO4 NCs have been revealed. Compared to the exponential PL decay in bulk counterparts induced by very fast energy migration, the non-exponential decay from 5D4 of Tb3+ in TbPO4 NCs is mainly attributed to the diffusion-limited energy migration due to more rapid energy transfer from Tb3+ to defects than the energy migration among Tb3+.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号